Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol Res ; 2023: 9603576, 2023.
Article in English | MEDLINE | ID: mdl-37545544

ABSTRACT

Background: Studies suggest that early-life gut microbiota composition and intestinal short-chain fatty acids (SCFAs) are linked to future asthma susceptibility. Furthermore, infancy offers a critical time window to modulate the microbiota and associated metabolites through diet-microbe interactions to promote infant health. Human milk oligosaccharides (HMOs), nondigestible carbohydrates abundant in breast milk, are prebiotics selectively metabolized by gut microbiota that consequently modify microbiome composition and SCFA production. Methods: Using a house dust mite mouse model of allergy, we investigated the impacts of early oral treatment of pups with biologically relevant doses of 2'-fucosyllactose (2'-FL) and 6'-sialyllactose (6'-SL), two of the most abundant HMOs in human milk, in amelioration of allergic airway disease severity. Results: We found that administration of 2'-FL and 6'-SL during early life reduced lung histopathology scores, circulating IgE, cytokine levels, and inflammatory cell infiltration, all hallmark symptoms of allergic asthma. HMO supplementation also increased the relative abundance of intestinal Bacteroidetes and Clostridia, known SCFA producers within the gut. Indeed, we detected increased SCFA concentrations in both the intestine and blood of adult mice who received HMOs prior to weaning. Conclusion: We propose a model in which orally administered HMOs delivered during early life shift the microbiota toward increased production of SCFAs, which dampens the allergic immune responses behind allergy and asthma. Overall, these data suggest the potential for HMO supplementation to protect infants against asthma development later in life, with possible benefits against additional atopic diseases such as eczema and food allergies.


Subject(s)
Asthma , Food Hypersensitivity , Gastrointestinal Microbiome , Humans , Infant , Female , Animals , Mice , Milk, Human/metabolism , Oligosaccharides/metabolism , Asthma/metabolism , Gastrointestinal Microbiome/physiology , Fatty Acids, Volatile/metabolism
2.
Infect Immun ; 91(2): e0057022, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36692308

ABSTRACT

A disrupted "dysbiotic" gut microbiome engenders susceptibility to the diarrheal pathogen Clostridioides difficile by impacting the metabolic milieu of the gut. Diet, in particular the microbiota-accessible carbohydrates (MACs) found in dietary fiber, is one of the most powerful ways to affect the composition and metabolic output of the gut microbiome. As such, diet is a powerful tool for understanding the biology of C. difficile and for developing alternative approaches for coping with this pathogen. One prominent class of metabolites produced by the gut microbiome is short-chain fatty acids (SCFAs), the major metabolic end products of MAC metabolism. SCFAs are known to decrease the fitness of C. difficile in vitro, and high intestinal SCFA concentrations are associated with reduced fitness of C. difficile in animal models of C. difficile infection (CDI). Here, we use controlled dietary conditions (8 diets that differ only by MAC composition) to show that C. difficile fitness is most consistently impacted by butyrate, rather than the other two prominent SCFAs (acetate and propionate), during murine model CDI. We similarly show that butyrate concentrations are lower in fecal samples from humans with CDI than in those from healthy controls. Finally, we demonstrate that butyrate impacts growth in diverse C. difficile isolates. These findings provide a foundation for future work which will dissect how butyrate directly impacts C. difficile fitness and will lead to the development of diverse approaches distinct from antibiotics or fecal transplant, such as dietary interventions, for mitigating CDI in at-risk human populations. IMPORTANCE Clostridioides difficile is a leading cause of infectious diarrhea in humans, and it imposes a tremendous burden on the health care system. Current treatments for C. difficile infection (CDI) include antibiotics and fecal microbiota transplant, which contribute to recurrent CDIs and face major regulatory hurdles, respectively. Therefore, there is an ongoing need to develop new ways to cope with CDI. Notably, a disrupted "dysbiotic" gut microbiota is the primary risk factor for CDI, but we incompletely understand how a healthy microbiota resists CDI. Here, we show that a specific molecule produced by the gut microbiota, butyrate, is negatively associated with C. difficile burdens in humans and in a mouse model of CDI and that butyrate impedes the growth of diverse C. difficile strains in pure culture. These findings help to build a foundation for designing alternative, possibly diet-based, strategies for mitigating CDI in humans.


Subject(s)
Clostridioides difficile , Clostridium Infections , Humans , Animals , Mice , Butyrates , Permissiveness , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Fatty Acids, Volatile
3.
Nutrients ; 13(10)2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34684364

ABSTRACT

Breastfeeding is the best source of nutrition during infancy and is associated with a broad range of health benefits. However, there remains a significant and persistent need for innovations in infant formula that will allow infants to access a wider spectrum of benefits available to breastfed infants. The addition of human milk oligosaccharides (HMOs) to infant formulas represents the most significant innovation in infant nutrition in recent years. Although not a direct source of calories in milk, HMOs serve as potent prebiotics, versatile anti-infective agents, and key support for neurocognitive development. Continuing improvements in food science will facilitate production of a wide range of HMO structures in the years to come. In this review, we evaluate the relationship between HMO structure and functional benefits. We propose that infant formula fortification strategies should aim to recapitulate a broad range of benefits to support digestive health, immunity, and cognitive development associated with HMOs in breastmilk. We conclude that acetylated, fucosylated, and sialylated HMOs likely confer important health benefits through multiple complementary mechanisms of action.


Subject(s)
Infant Health , Milk, Human/chemistry , Oligosaccharides/metabolism , Cognition , Humans , Immunomodulation , Infant , Nutrients/analysis , Oligosaccharides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...