Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 131(5)2018 03 01.
Article in English | MEDLINE | ID: mdl-29361522

ABSTRACT

Dysregulated secretion and extracellular activation of TGF-ß1 stimulates myofibroblasts to accumulate disordered and stiff extracellular matrix (ECM) leading to fibrosis. Fibronectin immobilizes latent TGF-ß-binding protein-1 (LTBP-1) and thus stores TGF-ß1 in the ECM. Because the ED-A fibronectin splice variant is prominently expressed during fibrosis and supports myofibroblast activation, we investigated whether ED-A promotes LTBP-1-fibronectin interactions. Using stiffness-tuneable substrates for human dermal fibroblast cultures, we showed that high ECM stiffness promotes expression and colocalization of LTBP-1 and ED-A-containing fibronectin. When rescuing fibronectin-depleted fibroblasts with specific fibronectin splice variants, LTBP-1 bound more efficiently to ED-A-containing fibronectin than to ED-B-containing fibronectin and fibronectin lacking splice domains. Function blocking of the ED-A domain using antibodies and competitive peptides resulted in reduced LTBP-1 binding to ED-A-containing fibronectin, reduced LTBP-1 incorporation into the fibroblast ECM and reduced TGF-ß1 activation. Similar results were obtained by blocking the heparin-binding stretch FNIII12-13-14 (HepII), adjacent to the ED-A domain in fibronectin. Collectively, our results suggest that the ED-A domain enhances association of the latent TGF-ß1 by promoting weak direct binding to LTBP-1 and by enhancing heparin-mediated protein interactions through HepII in fibronectin.


Subject(s)
Fibronectins/genetics , Fibrosis/genetics , Latent TGF-beta Binding Proteins/genetics , Transforming Growth Factor beta1/genetics , Animals , Carrier Proteins , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Fibronectins/chemistry , Fibrosis/pathology , HEK293 Cells , Humans , Latent TGF-beta Binding Proteins/chemistry , Myofibroblasts/metabolism , Myofibroblasts/pathology , Protein Binding/genetics , Protein Domains/genetics , Protein Isoforms/genetics , Rats
2.
Biochemistry ; 55(24): 3469-80, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27239955

ABSTRACT

Funnel metadynamics is a kind of computational simulation used to enhance the sampling of protein-ligand binding events in solution. By characterization of the binding interaction events, an estimated absolute binding free energy can be calculated. Nuclear magnetic resonance and funnel metadynamics were used to evaluate the binding of pyrocatechol derivatives (catechol, 4-methylcatechol, and 4-tert-butylcatechol) to human peroxiredoxin 5. Human peroxiredoxins are peroxidases involved in cellular peroxide homeostasis. Recently, overexpressed or suppressed peroxiredoxin levels have been linked to various diseases. Here, the catechol derivatives were found to be inhibitors against human peroxiredoxin 5 through a partial mixed type noncompetitive mechanism. Funnel metadynamics provided a microscopic model for interpreting the inhibition mechanism. Correlations were observed between the inhibition constants and the absolute binding free energy. Overall, this study showcases the fact that funnel metadynamics simulations can be employed as a preliminary approach to gain an in-depth understanding of potential enzyme inhibitors.


Subject(s)
Catechols/pharmacology , Enzyme Inhibitors/pharmacology , Magnetic Resonance Spectroscopy/methods , Peroxiredoxins/antagonists & inhibitors , Biochemical Phenomena , Humans , Kinetics , Models, Molecular , Molecular Dynamics Simulation , Solutions
3.
J Cell Biol ; 207(2): 283-97, 2014 Oct 27.
Article in English | MEDLINE | ID: mdl-25332161

ABSTRACT

Integrin-mediated force application induces a conformational change in latent TGF-ß1 that leads to the release of the active form of the growth factor from the extracellular matrix (ECM). Mechanical activation of TGF-ß1 is currently understood as an acute process that depends on the contractile force of cells. However, we show that ECM remodeling, preceding the activation step, mechanically primes latent TGF-ß1 akin to loading a mechanical spring. Cell-based assays and unique strain devices were used to produce a cell-derived ECM of controlled organization and prestrain. Mechanically conditioned ECM served as a substrate to measure the efficacy of TGF-ß1 activation after cell contraction or direct force application using magnetic microbeads. The release of active TGF-ß1 was always higher from prestrained ECM as compared with unorganized and/or relaxed ECM. The finding that ECM prestrain regulates the bioavailability of TGF-ß1 is important to understand the context of diseases that involve excessive ECM remodeling, such as fibrosis or cancer.


Subject(s)
Extracellular Matrix/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Cell Differentiation , Cells, Cultured , HEK293 Cells , Humans , Integrins/metabolism , Integrins/physiology , Mechanotransduction, Cellular , Myofibroblasts/cytology , Myofibroblasts/metabolism , Rats, Wistar
4.
Arch Biochem Biophys ; 550-551: 28-32, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24736382

ABSTRACT

The two genes most commonly associated with mutations linked to hypertrophic or dilated cardiomyopathies are ß-myosin and cardiac myosin binding protein-C (cMyBP-C). Both of these proteins interact with cardiac actin (ACTC). Currently there are 16 ACTC variants that have been found in patients with HCM or DCM. While some of these ACTC variants exhibit protein instability or polymerization-deficiencies that might contribute to the development of disease, other changes could cause changes in protein-protein interactions between sarcomere proteins and ACTC. To test the hypothesis that changes in ACTC disrupt interactions with cMyBP-C, we examined the interactions between seven ACTC variants and the N-terminal C0C2 fragment of cMyBP-C. We found there was a significant decrease in binding affinity (increase in Kd values) for the A331P and Y166C variants of ACTC. These results suggest that a change in the ability of cMyBP-C to bind actin filaments containing these ACTC protein variants might contribute to the development of disease. These results also provide clues regarding the binding site of the C0C2 fragment of cMyBP-C on F-actin.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Carrier Proteins/metabolism , Ventricular Myosins/metabolism , Actin Cytoskeleton/pathology , Actins/genetics , Binding Sites , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Hypertrophic/metabolism , Cardiomyopathy, Hypertrophic/pathology , Carrier Proteins/genetics , Gene Expression , Humans , Kinetics , Myocardium/metabolism , Myocardium/pathology , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sarcomeres/metabolism , Sarcomeres/pathology , Ventricular Myosins/genetics
5.
Cardiovasc Res ; 102(3): 407-17, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24639195

ABSTRACT

AIMS: Pathological tissue remodelling by myofibroblast contraction is a hallmark of cardiac fibrosis. Myofibroblasts differentiate from cardiac fibroblasts under the action of transforming growth factor-ß1 (TGF-ß1), which is secreted into the extracellular matrix as a large latent complex. Integrin-mediated traction forces activate TGF-ß1 by inducing a conformational change in the latent complex. The mesenchymal integrins αvß5 and αvß3 are expressed in the heart, but their role in the activation of TGF-ß1 remains elusive. Here, we test whether targeting αvß5 and αvß3 integrins reduces latent TGF-ß1 activation by cardiac fibroblasts with the goal to prevent the formation of α-smooth muscle actin (α-SMA)-expressing cardiac myofibroblasts and their contribution to fibrosis. METHODS AND RESULTS: Using a porcine model of induced right ventricular fibrosis and pro-fibrotic culture conditions, we show that integrins αvß5 and αvß3 are up-regulated in myofibroblast-enriched fibrotic lesions and differentiated cultured human cardiac myofibroblasts. Both integrins autonomously contribute to latent TGF-ß1 activation and myofibroblast differentiation, as demonstrated by function-blocking peptides and antibodies. Acute blocking of both integrins leads to significantly reduced TGF-ß1 activation by cardiac fibroblast contraction and loss of α-SMA expression, which is restored by adding active TGF-ß1. Manipulating integrin protein levels in overexpression and shRNA experiments reveals that both integrins can compensate for each other with respect to TGF-ß1 activation and induction of α-SMA expression. CONCLUSIONS: Integrins αvß5 and αvß3 both control myofibroblast differentiation by activating latent TGF-ß1. Pharmacological targeting of mesenchymal integrins is a possible strategy to selectively block TGF-ß1 activation by cardiac myofibroblasts and progression of fibrosis in the heart.


Subject(s)
Integrin alphaVbeta3/physiology , Myofibroblasts/pathology , Receptors, Vitronectin/physiology , Transforming Growth Factor beta1/physiology , Actins/analysis , Adult , Animals , Cell Differentiation , Cells, Cultured , Fibrosis , Humans , Integrin alphaVbeta3/antagonists & inhibitors , Male , Myocardium/pathology , Receptors, Vitronectin/antagonists & inhibitors , Swine
6.
PLoS One ; 8(5): e64560, 2013.
Article in English | MEDLINE | ID: mdl-23691248

ABSTRACT

Myofibroblast contraction is fundamental in the excessive tissue remodeling that is characteristic of fibrotic tissue contractures. Tissue remodeling during development of fibrosis leads to gradually increasing stiffness of the extracellular matrix. We propose that this increased stiffness positively feeds back on the contractile activities of myofibroblasts. We have previously shown that cycles of contraction directly correlate with periodic intracellular calcium oscillations in cultured myofibroblasts. We analyze cytosolic calcium dynamics using fluorescent calcium indicators to evaluate the possible impact of mechanical stress on myofibroblast contractile activity. To modulate extracellular mechanics, we seeded primary rat subcutaneous myofibroblasts on silicone substrates and into collagen gels of different elastic modulus. We modulated cell stress by cell growth on differently adhesive culture substrates, by restricting cell spreading area on micro-printed adhesive islands, and depolymerizing actin with Cytochalasin D. In general, calcium oscillation frequencies in myofibroblasts increased with increasing mechanical challenge. These results provide new insight on how changing mechanical conditions for myofibroblasts are encoded in calcium oscillations and possibly explain how reparative cells adapt their contractile behavior to the stresses occurring in normal and pathological tissue repair.


Subject(s)
Calcium Signaling , Intracellular Space/metabolism , Mechanical Phenomena , Myofibroblasts/cytology , Actins/chemistry , Animals , Biomechanical Phenomena , Cell Adhesion , Extracellular Matrix/metabolism , Myofibroblasts/metabolism , Rats , Stress, Mechanical
7.
PLoS One ; 7(5): e36821, 2012.
Article in English | MEDLINE | ID: mdl-22590617

ABSTRACT

Determining the molecular mechanisms that lead to the development of heart failure will help us gain better insight into the most costly health problem in the Western world. To understand the roles that the actin protein plays in the development of heart failure, we have taken a systematic approach toward characterizing human cardiac actin mutants that have been associated with either hypertrophic or dilated cardiomyopathy. Seven known cardiac actin mutants were expressed in a baculovirus system, and their intrinsic properties were studied. In general, the changes to the properties of the actin proteins themselves were subtle. The R312H variant exhibited reduced stability, with a T(m) of 53.6 °C compared to 56.8 °C for WT actin, accompanied with increased polymerization critical concentration and Pi release rate, and a marked increase in nucleotide release rates. Substitution of methionine for leucine at amino acid 305 showed no impact on the stability, nucleotide release rates, or DNase-I inhibition ability of the actin monomer; however, during polymerization, a 2-fold increase in Pi release was observed. Increases to both the T(m) and DNase-I inhibition activity suggested interactions between E99K actin molecules under monomer-promoting conditions. Y166C actin had a higher critical concentration resulting in a lower Pi release rate due to reduced filament-forming potential. The locations of mutations on the ACTC protein correlated with the molecular effects; in general, mutations in subdomain 3 affected the stability of the ACTC protein or affect the polymerization of actin filaments, while mutations in subdomains 1 and 4 more likely affect protein-protein interactions.


Subject(s)
Actin Cytoskeleton/chemistry , Actins/chemistry , Amino Acid Substitution , Mutation, Missense , Myocardium/chemistry , Protein Multimerization , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/ultrastructure , Actins/genetics , Actins/metabolism , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Humans , Myocardium/metabolism , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...