Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 47(19): 8714-20, 2008 Oct 06.
Article in English | MEDLINE | ID: mdl-18722422

ABSTRACT

Dimeric mixed-valence oxovanadium citrate [V 2O 3(phen) 3(Hcit)].5H 2O ( 1) (H 4cit = citric acid, phen = 1,10-phenanthroline) was isolated from a weak acidic medium. It could be converted quantitatively into a tetrameric oxovanadium citrate adduct of 1,10-phenanthroline [V 2O 3(phen) 3(Hcit) 2(phen) 3O 3V 2].12H 2O ( 2). This was supported by the trace of infrared spectra and X-ray diffraction patterns. The two compounds feature a bidentate citrate group that chelates only to one vanadium center through their negatively charged alpha-alkoxy and alpha-carboxy oxygen atoms, while the other beta-carboxy and beta-carboxylic acid groups are free to participate in strong intramolecular and intermolecular hydrogen bonding [2.45(1) in 1 and 2.487(2) A in 2], respectively. This is also the case of homocitrato vanadate(V/IV) [V 2O 3(phen) 3( R, S-H 2homocit)]Cl.6H 2O ( 3) (H 4homocit = homocitric acid), which features a binding mode similar to that found in the R-homocitrato iron molybdenum cofactor of Mo-nitrogenase. Moreover, the homocitrato vanadate(V) [VO 2(phen) 2] 2[V 2O 4( R,S-H 2homocit) 2].4H 2O.2C 2H 5OH ( 4) is isolated as a molecular precursor for the formation of mixed-valence complex 3. The V-O alpha-alkoxy and V-O alpha-carboxy bond distances of homocitrate complexes 3 and 4 are 1.858(4) and 1.968(6) av and 2.085(4) and 1.937(5) A, respectively. They are shorter than those of homocitrate to FeVco (2.15 A). The gamma-carboxy groups of coordinated homocitrato complexes 3 and 4, and the free homocitrate salt Na 3(Hhomocit).H 2O ( 5), form strong hydrogen bonds with the chloride ion and the water molecule [2.982(5) in 3, 2.562(9) in 4, and 2.763(1) A in 5], respectively.


Subject(s)
Chelating Agents/chemistry , Citrates/chemistry , Heterocyclic Compounds/chemistry , Nitrogen/chemistry , Tricarboxylic Acids/chemistry , Vanadates/chemistry , Ligands
2.
Dalton Trans ; (18): 2475-9, 2008 May 14.
Article in English | MEDLINE | ID: mdl-18461203

ABSTRACT

A 1,10-phenanthroline (phen) chelated molybdenum(VI) citrate, [(MoO2)2O(H2cit)(phen)(H2O)2] x H2O (1) (H4cit = citric acid), is isolated from the reaction of citric acid, ammonium molybdate and phen in acidic media (pH 0.5-1.0). A citrato oxomolybdenum(V) complex, [(MoO)2O(H2cit)2(bpy)2] x 4H2O (2), is synthesized by the reduction of citrato molybdate with hydrazine hydrochloride in the presence of 2,2'-bipyridine (bpy), and a monomeric molybdenum(VI) citrate [MoO2(H2cit)(bpy)] x H2O (6) is also isolated and characterized structurally. The citrate ligand in the three neutral compounds uses the alpha-alkoxy and alpha-carboxy groups to chelate as a bidentate leaving the two beta-carboxylic acid groups free, that is different from the tridentate chelated mode in the citrato molybdate(VI and V) complexes. 1 and in solution show obvious dissociation based on 13C NMR studies.


Subject(s)
Chelating Agents/chemistry , Citric Acid/chemistry , Heterocyclic Compounds/chemistry , Molybdenum/chemistry , Oxygen/chemistry , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure
3.
Chem Commun (Camb) ; (44): 4608-10, 2007 Nov 28.
Article in English | MEDLINE | ID: mdl-17989807

ABSTRACT

We utilized the strategy of 'borrowing SERS activity', by chemically coating several atomic layers of a Pt-group metal on highly SERS-active Au nanoparticles, to obtain the first SERS (also Raman) spectra of surface water on Pt and Pd metals, and propose conceptual models for water adsorbed on Pt and Pd metal surfaces.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Platinum/chemistry , Spectrum Analysis, Raman/methods , Electrodes , Sensitivity and Specificity , Surface Properties , Water/chemistry
4.
Inorg Chem ; 46(17): 6846-8, 2007 Aug 20.
Article in English | MEDLINE | ID: mdl-17645332

ABSTRACT

Ethylenediaminetetraacetate is converted into its triacetate by peroxotitanate(IV), and strong chelation of the triacetate ligand to the metal center facilitates elimination of the pendant acetoxylate group. Various species of peroxotitanium(IV) complexes in the reaction sequence are fully characterized.

5.
Inorg Chem ; 45(20): 8447-51, 2006 Oct 02.
Article in English | MEDLINE | ID: mdl-16999446

ABSTRACT

Initial investigations into the possible role of homocitric acid in iron molybdenum cofactor (FeMo-co) of nitrogenase lead us to isolate and characterize two tetrameric molybdate(VI) species. The complexes K2(NH4)2[(MoO2)4O3(R,S-Hhomocit)2].6H2O (1) and K5[(MoO2)4O3(R,S-Hhomocit)2]Cl.5H2O (2) (homocitric acid = H4homocit, C7H10O7) are prepared from the reactions of acyclic homocitric acid and molybdates, which represent the first synthetic structural examples of molybdenum homocitrate complexes. The homocitrate ligand trapped by tetranuclear molybdate coordinates to the molybdenum(VI) atom through alpha-alkoxy and alpha-, beta-carboxy groups. The physical properties, structural parameters, and their possible biological relevances are discussed.


Subject(s)
Molybdenum/chemistry , Organometallic Compounds/chemistry , Tricarboxylic Acids/chemistry , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Molybdoferredoxin/chemistry , Organometallic Compounds/chemical synthesis , Spectroscopy, Fourier Transform Infrared , Tricarboxylic Acids/chemical synthesis
6.
Inorg Chem ; 44(20): 6912-4, 2005 Oct 03.
Article in English | MEDLINE | ID: mdl-16180846

ABSTRACT

A novel dimeric dioxomolybdenum(VI) citrate complex, K[(MoO2)2-(OH)(H2cit)2].4H2O (1), with weak coordination of beta-carboxylic acid groups and the first structural example of an oxomolybdenum(V) citrate complex, (NH4)6[Mo2O4(cit)2].3H2O (2) (H4cit = citric acid), are isolated in a very acidic solution (pH 0.5-1.0) and neutral conditions (pH 7.0-8.0), respectively. Complex 1 displays strong double hydrogen bonds through beta-carboxyl and beta-carboxylic acid groups [2.621(9) A]. Transformations of the dimeric molybdenum(VI) citrate show that protonation of a carboxyl group will weaken the coordination of molybdenum(VI) citrate. There are obvious dissociations of molybdenum(VI/V) citrate complexes based on 13C NMR observations in solution.


Subject(s)
Citrates , Molybdenum , Organometallic Compounds/chemistry , Dimerization , Hydrogen-Ion Concentration , Models, Molecular , X-Ray Diffraction
7.
J Org Chem ; 70(4): 1400-7, 2005 Feb 18.
Article in English | MEDLINE | ID: mdl-15704976

ABSTRACT

[reaction: see text] The forced one-electron reduction of carbon tetrachloride with sodium in a sealed steel vessel is shown to have a narrow window of conditions to arrest the reaction at the polychlorinated aromatic hydrocarbons (PCAHs), as well as to prevent the reaction from proceeding all the way to the final stage of graphite and other carbon solids. The intermediates are quenched with toluene or benzene to give electrophilic substitution products and with water to give a quinomethine as the major product. The product pattern leads us to propose the carbene, perchlorobenzo[c,d]pyren-6-ylidene, or its reversible dimer as the major intermediate among others, that survives the severe conditions until coming into contact with these nucleophiles. Mainly from aromatic resonance stabilization, the carbene is proposed to have a delocalized singlet state analogous to a ylide electronic structure and, thus, undergoes observed ionic reactions instead of typical carbene reactions. This work serves as a mechanistic link on the structural evolution of carbon networks between molecular chemistry and nanomaterial chemistry.

SELECTION OF CITATIONS
SEARCH DETAIL
...