Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage Clin ; 36: 103240, 2022.
Article in English | MEDLINE | ID: mdl-36510411

ABSTRACT

Leber Hereditary Optic Neuropathy (LHON) is an inherited mitochondrial retinal disease that causes the degeneration of retinal ganglion cells and leads to drastic loss of visual function. In the last decades, there has been a growing interest in using Magnetic Resonance Imaging (MRI) to better understand mechanisms of LHON beyond the retina. This is partially due to the emergence of gene-therapies for retinal diseases, and the accompanying expanded need for reliably quantifying and monitoring visual processing and treatment efficiency in patient populations. This paper aims to draw a current picture of key findings in this field so far, the challenges of using neuroimaging methods in patients with LHON, and important open questions that MRI can help address about LHON disease mechanisms and prognoses, including how downstream visual brain regions are affected by the disease and treatment and why, and how scope for neural plasticity in these pathways may limit or facilitate recovery.


Subject(s)
Mitochondrial Diseases , Optic Atrophy, Hereditary, Leber , Humans , Optic Atrophy, Hereditary, Leber/diagnostic imaging , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/metabolism , Retinal Ganglion Cells/metabolism , Retina/diagnostic imaging , Retina/pathology , Magnetic Resonance Imaging
2.
NPJ Digit Med ; 3: 32, 2020.
Article in English | MEDLINE | ID: mdl-32195367

ABSTRACT

Simulations of visual impairment are used to educate and inform the public. However, evidence regarding their accuracy remains lacking. Here we evaluated the effectiveness of modern digital technologies to simulate the everyday difficulties caused by glaucoma. 23 normally sighted adults performed two everyday tasks that glaucoma patients often report difficulties with: a visual search task in which participants attempted to locate a mobile phone in virtual domestic environments (virtual reality (VR)), and a visual mobility task in which participants navigated a physical, room-scale environment, while impairments were overlaid using augmented reality (AR). On some trials, a gaze-contingent simulated scotoma-generated using perimetric data from a real patient with advanced glaucoma-was presented in either the superior or inferior hemifield. The main outcome measure was task completion time. Eye and head movements were also tracked and used to assess individual differences in looking behaviors. The results showed that the simulated impairments substantially impaired performance in both the VR (visual search) and AR (visual mobility) tasks (both P < 0.001). Furthermore, and in line with previous patient data: impairments were greatest when the simulated Visual Field Loss (VFL) was inferior versus superior (P < 0.001), participants made more eye and head movements in the inferior VFL condition (P < 0.001), and participants rated the inferior VFL condition as more difficult (P < 0.001). Notably, the difference in performance between the inferior and superior conditions was almost as great as the difference between a superior VFL and no impairment at all (VR: 71%; AR: 70%). We conclude that modern digital simulators are able to replicate and objectively quantify some of the key everyday difficulties associated with visual impairments. Advantages, limitations, and possible applications of current technologies are discussed. Instructions are also given for how to freely obtain the software described (OpenVisSim).

3.
Vision Res ; 169: 49-57, 2020 04.
Article in English | MEDLINE | ID: mdl-32179339

ABSTRACT

In instances of asymmetric peripheral vision loss (e.g., glaucoma), binocular performance on simple psychophysical tasks (e.g., static threshold perimetry) is well-predicted by the better seeing eye alone. This suggests that peripheral vision is largely 'better-eye limited'. In the present study, we examine whether this also holds true for real-world tasks, or whether even a degraded fellow eye contributes important information for tasks of daily living. Twelve normally-sighted adults performed an everyday visually-guided action (finding a mobile phone) in a virtual-reality domestic environment, while levels of peripheral vision loss were independently manipulated in each eye (gaze-contingent blur). The results showed that even when vision in the better eye was held constant, participants were significantly slower to locate the target, and made significantly more head- and eye-movements, as peripheral vision loss in the worse eye increased. A purely unilateral peripheral impairment increased response times by up to 25%, although the effect of bilateral vision loss was much greater (>200%). These findings indicate that even a degraded visual field still contributes important information for performing everyday visually-guided actions. This may have clinical implications for how patients with visual field loss are managed or prioritized, and for our understanding of how binocular information in the periphery is integrated.


Subject(s)
Activities of Daily Living , Vision Disorders , Visual Fields , Blindness , Eye Movements , Glaucoma , Humans , Scotoma , Vision Disorders/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...