Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-24303294

ABSTRACT

SysBioCube is an integrated data warehouse and analysis platform for experimental data relating to diseases of military relevance developed for the US Army Medical Research and Materiel Command Systems Biology Enterprise (SBE). It brings together, under a single database environment, pathophysio-, psychological, molecular and biochemical data from mouse models of post-traumatic stress disorder and (pre-) clinical data from human PTSD patients.. SysBioCube will organize, centralize and normalize this data and provide an access portal for subsequent analysis to the SBE. It provides new or expanded browsing, querying and visualization to provide better understanding of the systems biology of PTSD, all brought about through the integrated environment. We employ Oracle database technology to store the data using an integrated hierarchical database schema design. The web interface provides researchers with systematic information and option to interrogate the profiles of pan-omics component across different data types, experimental designs and other covariates.

2.
Int J Gynecol Cancer ; 22(5): 732-41, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22635025

ABSTRACT

OBJECTIVE: To identify obesity-related cancer genes in endometrial and adipose tissue depots of body mass index-matched morbidly obese women with and without endometrial cancer. METHODS: Eight women undergoing hysterectomy (4 women with and 4 women without endometrial cancer) were matched by age (52.6 years) and body mass index (44.5 kg/m). Endometrium, visceral adipose tissue, and subcutaneous adipose tissue were collected and subjected to microarray analysis using Affymetrix Human Genome U133 Plus 2.0 Arrays. Gene set enrichment analysis used to extract biological information from the gene expression data and t test metric ranked and compared genes in the expression data set. Protein expression was measured in the endometrial samples, and serum was collected for hormone/metabolite assays. RESULTS: No significant differences were detected in hormone/metabolite levels between groups. Gene set enrichment analysis comparisons demonstrated that endometrial, visceral adipose and subcutaneous adipose tissues displayed 40, 47, and 38 alternatively regulated gene set pathways when comparing patients with and without cancer. Nineteen gene sets were alternately regulated in both visceral and subcutaneous adipose tissues; however, eighteen of these were regulated in the opposite direction. Five pathways were significantly and alternately regulated in all 3 tissue types and included glycolysis/gluconeogenesis, ribosome, peroxisome proliferator activated receptor signaling, pathogenic Escherichia coli infection, and natural killer-mediated cytotoxicity. In the malignant endometrium, liver kinase B1 underexpression was observed in all patients with cancer. Liver kinase B1 underexpression decreased adenosine monophosphate-activated protein kinase activity toward acetyl-CoA carboxylase and implied enhanced lipid biosynthesis in obesity-induced endometrial cancer. CONCLUSIONS: Subcutaneous and visceral adipose tissue depots have opposite patterns of gene expression in obese patients with and without endometrial cancer. The altered de novo lipogenesis and individual gene targets identified provide new potential targets for cancer treatment and prevention for at-risk obese women.


Subject(s)
Adiposity/genetics , Biomarkers, Tumor/genetics , Endometrial Neoplasms/etiology , Endometrium/metabolism , Intra-Abdominal Fat/metabolism , Obesity/genetics , Subcutaneous Fat/metabolism , Adult , Blotting, Western , Body Mass Index , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/pathology , Endometrium/pathology , Female , Gene Expression Profiling , Humans , Intra-Abdominal Fat/pathology , Middle Aged , Obesity/complications , Oligonucleotide Array Sequence Analysis , Prognosis , Subcutaneous Fat/pathology
3.
Melanoma Res ; 21(4): 274-84, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21654344

ABSTRACT

Melanomas depend on autocrine signals for proliferation and survival; however, no systematic screen of known receptor tyrosine kinases (RTKs) has been performed to identify which autocrine signaling pathways are activated in melanoma. Here, we performed a comprehensive analysis of 42 RTKs in six individual human melanoma tumor specimens as well as 17 melanoma cell lines, some of which were derived from the tumor specimens. We identified five RTKs that were active in almost every one of the melanoma tissue specimens and cell lines, including two previously unreported receptors, insulin-like growth factor receptor 1 (IGF-1R) and macrophage-stimulating protein receptor (MSPR), in addition to three receptors (vascular endothelial growth factor receptor, fibroblast growth factor receptor, and hepatocyte growth factor receptor) known to be autocrine activated in melanoma. We show, by quantitative real time PCR, that all melanoma cell lines expressed genes for the RTK ligands such as HGF, IGF-1, and MSP. Addition of antibodies to either IGF-1 or HGF, but not to MSP, to the culture medium blocked melanoma cell proliferation, and even caused net loss of melanoma cells. Antibody addition deactivated IGF-1R and hepatocyte growth factor receptors, as well as mitogen-activated protein kinase signaling. Thus, IGF-1 is a new growth factor for autocrine driven proliferation of human melanoma in vitro. Our results suggest that IGF-1-IGF-1R autocrine pathway in melanoma is a possible target for therapy in human melanomas.


Subject(s)
Autocrine Communication , Insulin-Like Growth Factor I/metabolism , Melanoma/enzymology , Receptor, IGF Type 1/metabolism , Signal Transduction , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Insulin-Like Growth Factor I/genetics , Ligands , Melanoma/genetics , Melanoma/secondary , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Receptor, IGF Type 1/genetics , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
4.
BMC Genomics ; 11 Suppl 3: S4, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21143786

ABSTRACT

BACKGROUND: Military and industrial activities have lead to reported release of 2,4-dinitrotoluene (2,4DNT) into soil, groundwater or surface water. It has been reported that 2,4DNT can induce toxic effects on humans and other organisms. However the mechanism of 2,4DNT induced toxicity is still unclear. Although a series of methods for gene network construction have been developed, few instances of applying such technology to generate pathway connected networks have been reported. RESULTS: Microarray analyses were conducted using liver tissue of rats collected 24h after exposure to a single oral gavage with one of five concentrations of 2,4DNT. We observed a strong dose response of differentially expressed genes after 2,4DNT treatment. The most affected pathways included: long term depression, breast cancer regulation by stathmin1, WNT Signaling; and PI3K signaling pathways. In addition, we propose a new approach to construct pathway connected networks regulated by 2,4DNT. We also observed clear dose response pathway networks regulated by 2,4DNT. CONCLUSIONS: We developed a new method for constructing pathway connected networks. This new method was successfully applied to microarray data from liver tissue of 2,4DNT exposed animals and resulted in the identification of unique dose responsive biomarkers in regards to affected pathways.


Subject(s)
Dinitrobenzenes/toxicity , Gene Expression Profiling , Liver/metabolism , Water Pollutants, Chemical/toxicity , Animals , Dose-Response Relationship, Drug , Female , Gene Regulatory Networks/drug effects , Liver/drug effects , Oligonucleotide Array Sequence Analysis , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Stathmin/genetics , Stathmin/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism
5.
BMC Bioinformatics ; 10 Suppl 11: S5, 2009 Oct 08.
Article in English | MEDLINE | ID: mdl-19811689

ABSTRACT

BACKGROUND: Pathway-oriented experimental and computational studies have led to a significant accumulation of biological knowledge concerning three major types of biological pathway events: molecular signaling events, gene regulation events, and metabolic reaction events. A pathway consists of a series of molecular pathway events that link molecular entities such as proteins, genes, and metabolites. There are approximately 300 biological pathway resources as of April 2009 according to the Pathguide database; however, these pathway databases generally have poor coverage or poor quality, and are difficult to integrate, due to syntactic-level and semantic-level data incompatibilities. RESULTS: We developed the Human Pathway Database (HPD) by integrating heterogeneous human pathway data that are either curated at the NCI Pathway Interaction Database (PID), Reactome, BioCarta, KEGG or indexed from the Protein Lounge Web sites. Integration of pathway data at syntactic, semantic, and schematic levels was based on a unified pathway data model and data warehousing-based integration techniques. HPD provides a comprehensive online view that connects human proteins, genes, RNA transcripts, enzymes, signaling events, metabolic reaction events, and gene regulatory events. At the time of this writing HPD includes 999 human pathways and more than 59,341 human molecular entities. The HPD software provides both a user-friendly Web interface for online use and a robust relational database backend for advanced pathway querying. This pathway tool enables users to 1) search for human pathways from different resources by simply entering genes/proteins involved in pathways or words appearing in pathway names, 2) analyze pathway-protein association, 3) study pathway-pathway similarity, and 4) build integrated pathway networks. We demonstrated the usage and characteristics of the new HPD through three breast cancer case studies. CONCLUSION: HPD http://bio.informatics.iupui.edu/HPD is a new resource for searching, managing, and studying human biological pathways. Users of HPD can search against large collections of human biological pathways, compare related pathways and their molecular entity compositions, and build high-quality, expanded-scope disease pathway models. The current HPD software can help users address a wide range of pathway-related questions in human disease biology studies.


Subject(s)
Databases, Factual , Software , Systems Biology/methods , Computational Biology/methods , Databases, Protein , Humans , Internet , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...