Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Gene ; 926: 148620, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38821329

ABSTRACT

The onset of COVID-19 due to the SARS CoV-2 virus has spurred an urgent need for potent therapeutics and vaccines to combat this global pandemic. The main protease (Mpro) of the virus, crucial in its replication, has become a focal point in developing anti-COVID-19 drugs. The cysteine protease Mpro in SARS CoV-2 bears a significant resemblance to the same protease found in SARS CoV-1. Previous research highlighted phlorotannins derived from Ecklonia cava, an edible marine algae, as inhibitors of SARS CoV-1 Mpro activity. However, it remains unclear whether these marine-derived phlorotannins also exert a similar inhibitory effect on SARS CoV-2 Mpro. To unravel this, our study utilized diverse in-silico methodologies. We explored the pharmacological potential of various phlorotannins (phloroglucinol, triphloretol-A, eckol, 2-phloroeckol, 7-phloroeckol, fucodiphloroethol G, dieckol, and phlorofucofuroeckol-A) and assessed their binding efficacies alongside established Mpro inhibitors (N3 and lopinavir) through molecular docking studies. Among these compounds, five phlorotannins (eckol, 2-phloroeckol, 7-phloroeckol, dieckol, and phlorofucofuroeckol-A) exhibited potent binding affinities comparable to or surpassing N3 and lopinavir, interacting especially with the catalytic residues His41 and Cys145 of Mpro. Moreover, molecular dynamics simulations revealed that these five Mpro-phlorotannin complexes displayed enhanced stability and maintained comparable or slightly reduced compactness. They exhibited reduced conformational changes and increased expansion relative to the Mpro-N3 and/or Mpro-lopinavir complex. Our MM-GBSA analysis further supported these findings. Overall, our investigation highlights the potential of these five phlorotannins in inhibiting the proteolytic function of SARS CoV-2 Mpro, offering promise for anti-COVID-19 drug development.


Subject(s)
Coronavirus 3C Proteases , Molecular Docking Simulation , Molecular Dynamics Simulation , Phaeophyceae , SARS-CoV-2 , Tannins , Phaeophyceae/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Tannins/pharmacology , Tannins/chemistry , Humans , COVID-19/virology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Dioxins
2.
Gene ; 922: 148553, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38734190

ABSTRACT

The global mortality rate has been significantly impacted by the COVID-19 pandemic, caused by the SARS CoV-2 virus. Although the pursuit for a potent antiviral is still in progress, experimental therapies based on repurposing of existing drugs is being attempted. One important therapeutic target for COVID-19 is the main protease (Mpro) that cleaves the viral polyprotein in its replication process. Recently minocycline, an antimycobacterium drug, has been successfully implemented for the treatment of COVID-19 patients. But it's mode of action is still far from clear. Furthermore, it remains unresolved whether alternative antimycobacterium drugs can effectively regulate SARS CoV-2 by inhibiting the enzymatic activity of Mpro. To comprehend these facets, eight well-established antimycobacterium drugs were put through molecular docking experiments. Four of the antimycobacterium drugs (minocycline, rifampicin, clofazimine and ofloxacin) were selected by comparing their binding affinities towards Mpro. All of the four drugs interacted with both the catalytic residues of Mpro (His41 and Cys145). Additionally, molecular dynamics experiments demonstrated that the Mpro-minocyline complex has enhanced stability, experiences reduced conformational fluctuations and greater compactness than other three Mpro-antimycobacterium and Mpro-N3/lopinavir complexes. This research furnishes evidences for implementation of minocycline against SARS CoV-2. In addition, our findings also indicate other three antimycobacterium/antituberculosis drugs (rifampicin, clofazimine and ofloxacin) could potentially be evaluated for COVID-19 therapy.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases , Drug Repositioning , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2 , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Anti-Bacterial Agents/pharmacology , Minocycline/pharmacology , Rifampin/pharmacology , COVID-19/virology , Computer Simulation
3.
J Phys Chem B ; 127(50): 10814-10823, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38055728

ABSTRACT

The hydrogen bond structure and dynamics of water and hydrogen peroxide (H2O2) in their binary mixtures have been studied at 298 K by classical molecular dynamics simulations. Twelve different concentrations of aqueous-H2O2 solutions are considered for this study. We have analyzed the interactions between water and H2O2 by site-site pair correlation functions and observed that the probability of formation of OW···HP hydrogen bonds are higher compared to OP···HW. The second solvation shell of water is strongly affected by increasing H2O2 concentrations (XP > 0.50), which signifies the destruction of the tetrahedral network structure of water. The translational and rotational dynamics of water and H2O2 do not significantly change up to 25% of H2O2 in aqueous mixtures. The hydrogen bond lifetime of water-water, water-H2O2, and H2O2-H2O2 in the aqueous-H2O2 solutions shows a very minimal change with increasing H2O2 concentrations. In addition to this, we also investigated the effect of H2O2 on the insulin monomer and observed that higher concentrations of H2O2 (XP = 0.10) change the secondary structure. The influence of H2O2 is more on chain-B than that on chain-A in the insulin monomer. The H2O2 occupancy at the protein surface is higher for negatively charged (GLU) and polar (ASN and THR) amino acid residues compared with that for positively charged and neutral residues in the solutions.

4.
ChemistrySelect ; 7(14): e202200055, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35600910

ABSTRACT

Natural compounds in medicinal plants are best remedies for different diseases and are important to develop new drugs. This work was dedicated to understand the role of different natural compounds of Terminalia Chebula, a well-known herbal plant, in the treating of Covid 19. In this article, we have investigated interactions of such natural compounds from Terminalia Chebula with the main protease (Mpro) of the SARS-CoV-2, which is a key component for cleavage of viral polyprotein, and an important target for the development of drugs towards COVID-19. We have performed molecular docking study on 22 different molecules of Terminalia Chebula and proposed that 7 of the natural compounds (triterpenoids and sterols) interacts with a comparable or stronger interactions than the inhibitor N3. Molecular dynamics simulations (100 ns) revealed that 7 Mpro-Terminalia Chebula complexes are stable, conformationally less fluctuated, slightly less compact, and marginally expanded than ligand-free conformation of Mpro. The intermolecular H-bonding and detailed MM/PBSA and MM-GBSA analysis showed Daucosterol interaction to be the most strong, whereas comparable interactions were observed for Arjunetin, Maslinic acid, and Bellericoside. Our study suggested that these natural compounds can act as potent Mpro inhibitors for SARS-CoV-2, and may evolve as promising anti-COVID-19 drugs in the near future.

5.
J Biomol Struct Dyn ; 40(5): 2053-2066, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33094701

ABSTRACT

The outbreak of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), represents a pandemic threat to global public health. To date, ∼530,000 people died of this disease worldwide. Presently, researchers/clinicians are adopting the drug repurposing strategy to combat this disease. It has also been observed that some repurposed anti-viral drugs may serve as potent inhibitors of SARS CoV-2 Mpro, a key component of viral replication. Apart from these anti-viral drugs, recently dexamethasone (an important corticosteroid) is effectively used to treat COVID-19 patients. However, the mechanism behind the mode of its action is not so clear. Additionally, the effect of other well-known corticosteroids to control this disease by inhibiting the proteolytic activity of Mpro is ambiguous. In this study, we have adopted computational approaches to understand these aspects. Six well-known corticosteroids (cortisone, hydrocortisone, prednisolone, methylprednisolone, betamethasone and dexamethasone) and two repurposed drugs (darunavir and lopinavir) against COVID-19 were subjected for molecular docking studies. Two of them (betamethasone and dexamethasone) were selected by comparing their binding affinities with selected repurposed drugs toward Mpro. Betamethasone and dexamethasone interacted with both the catalytic residues of Mpro (His41 and Cys145). Molecular dynamics studies further revealed that these two Mpro-corticosteroid complexes are more stable, experience less conformational fluctuations and more compact than Mpro-darunavir/lopinavir complexes. These findings were additionally validated by MM-GBSA analysis. This study provides corroboration for execution of anti-COVID-19 activity of dexamethasone. Our study also emphasizes on the use of another important corticosteroid (betamethasone) as potential therapeutic agent for COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Adrenal Cortex Hormones/pharmacology , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2
6.
J Biomol Struct Dyn ; 40(6): 2647-2662, 2022 04.
Article in English | MEDLINE | ID: mdl-33140695

ABSTRACT

SARS CoV-2 is the causative agent of the pandemic disease COVID-19. There is an urgent need for effective drugs or vaccines which can effectively combat this outbreak. The main protease (Mpro), a key component for the SARS CoV-2 replication, is considered to be one of the important drug targets for developing anti-COVID-19 drugs. This SARS CoV-2 Mpro/cysteine protease has high sequence similarity with the same protease from SARS CoV-1. Previously, it has been shown experimentally that eight diterpenoids and four biflavonoids derived from the leaf of Torreya nucifera show inhibitory effect on the cleavage/catalytic activity of the SARS CoV-1 Mpro. But whether these phytochemicals exhibit any inhibitory effect on SARS CoV-2 Mpro is unclear. To understand this fact, here, we have adopted various in-silico approaches. Diterpenoids and biflavonoids those qualified pharmacological test (hinokiol, amentoflavone, bilobetin and ginkgetin) and two well-known Mpro inhibitors (N3 and lopinavir) were subjected for molecular docking studies. Only three biflavonoids (amentoflavone, bilobetin and ginkgetin) were selected by comparing their binding affinities with N3 and lopinavir. They interacted with two most important catalytic residues of Mpro (His41 and Cys145). Molecular dynamics studies further revealed that these three Mpro-biflavonoid complexes are highly stable and share a similar degree of compactness. Besides, these complexes experience less conformational fluctuations and more expansion than Mpro-N3 and/or Mpro-lopinavir complex. MM-GBSA and H-bond analysis further corroborated these findings. Altogether, our study suggested that these three biflavonoids could possibly inhibit the proteolytic/catalytic activity of SARS CoV-2 Mpro and might be useful for COVID-19 treatment.Communicated by Ramaswamy H. Sarma.


Subject(s)
Biflavonoids , COVID-19 Drug Treatment , Diterpenes , Taxaceae , Biflavonoids/pharmacology , Computers , Humans , Molecular Docking Simulation , Plant Leaves , Protease Inhibitors/pharmacology
7.
J Biomol Struct Dyn ; 40(9): 4110-4121, 2022 06.
Article in English | MEDLINE | ID: mdl-33292085

ABSTRACT

The pandemic disease COVID-19, caused by SARS CoV-2, has created a global crisis. Presently, researchers across the globe are in a quest to identify/develop drugs or vaccines by targeting different non-structural proteins (Nsps) of SARS CoV-2. One such important drug target is Nsp5/main protease (Mpro) which plays a critical role in the viral replication. This cysteine protease/Mpro of SARS CoV-2 has high sequence similarity with the same protease from SARS CoV-1. Previously, it has been shown experimentally that eight polyphenols derived from the root of Isatis indigotica show inhibitory effect on the cleavage/catalytic activity of the SARS CoV-1 Mpro. But whether these polyphenols exhibit any inhibitory effect on SARS CoV-2 Mpro is unclear. To explore this possibility, here, we have adopted various computational approaches. Polyphenols that qualified the pharmacological parameters (indigo, sinigrin, hesperetin and daidzein) and two well-known Mpro inhibitors (N3 and lopinavir) were subjected to molecular docking studies. Two of them (sinigrin and hesperetin) were selected by comparing their binding affinities with N3 and lopinavir. Sinigrin and hesperetin interacted with the two most important catalytic residues of Mpro (His41 and Cys145). Molecular dynamics studies further revealed that these two Mpro-polyphenol complexes are more stable and experience less conformational fluctuations than Mpro-N3/lopinavir complex. The Mpro-hesperetin complex was more compact and less expanded than Mpro-sinigrin complex. These findings were additionally validated by MM-GBSA analysis. As a whole, our study revealed that these two polyphenols may be potent SARS CoV-2 Mpro inhibitors and may possibly be considered for COVID-19 treatment.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Isatis , Protease Inhibitors , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Humans , Isatis/chemistry , Lopinavir , Molecular Docking Simulation , Molecular Dynamics Simulation , Polyphenols/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
8.
J Mol Struct ; 1229: 129489, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33100380

ABSTRACT

The COVID-19 pandemic, caused by SARS CoV-2, is responsible for millions of death worldwide. No approved/proper therapeutics is currently available which can effectively combat this outbreak. Several attempts have been undertaken in the search of effective drugs to control the spread of SARS CoV-2 infection. The main protease (Mpro), key component for the cleavage of the viral polyprotein, is considered to be one of the important drug targets for treating COVID-19. Various phytochemicals, including polyphenols and alkaloids, have been proposed as potent inhibitors of Mpro. The alkaloids from leaf extracts of Justicia adhatoda have also been reported to possess anti-viral activity. But whether these alkaloids exhibit any inhibitory effect on SARS CoV-2 Mpro is far from clear. To explore this in detail, we have adopted computational approaches. Justicia adhatoda alkaloids possessing proper drug-likeness properties and two anti-HIV drugs (lopinavir and darunavir; having binding affinity -7.3 to -7.4 kcal/mol) were docked against SARS CoV-2 Mpro to study their binding properties. Only one alkaloid (anisotine) had interaction with both the catalytic residues (His41 and Cys145) of Mpro and exhibited good binding affinity (-7.9 kcal/mol). Molecular dynamic simulations (100 ns) revealed that Mpro-anisotine complex is more stable, conformationally less fluctuated; slightly less compact and marginally expanded than Mpro-darunavir/lopinavir complex. Even the number of intermolecular H-bonds and MM-GBSA analysis suggested that anisotine is a more potent Mpro inhibitor than the two previously recommended antiviral drugs (lopinavir and darunavir) and may evolve as a promising anti-COVID-19 drug if proven in animal experiments and on patients.

9.
J Biomol Struct Dyn ; 39(12): 4362-4374, 2021 08.
Article in English | MEDLINE | ID: mdl-32568613

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a viral respiratory disease which caused global health emergency and announced as pandemic disease by World Health Organization. Lack of specific drug molecules or treatment strategy against this disease makes it more devastating. Thus, there is an urgent need of effective drug molecules to fight against COVID-19. The main protease (Mpro) of SARS CoV-2, a key component of this viral replication, is considered as a prime target for anti-COVID-19 drug development. In order to find potent Mpro inhibitors, we have selected eight polyphenols from green tea, as these are already known to exert antiviral activity against many RNA viruses. We have elucidated the binding affinities and binding modes between these polyphenols including a well-known Mpro inhibitor N3 (having binding affinity -7.0 kcal/mol) and Mpro using molecular docking studies. All eight polyphenols exhibit good binding affinity toward Mpro (-7.1 to -9.0 kcal/mol). However, only three polyphenols (epigallocatechin gallate, epicatechingallate and gallocatechin-3-gallate) interact strongly with one or both catalytic residues (His41 and Cys145) of Mpro. Molecular dynamics simulations (100 ns) on these three Mpro-polyphenol systems further reveal that these complexes are highly stable, experience less conformational fluctuations and share similar degree of compactness. Estimation of total number of intermolecular H-bond and MM-GBSA analysis affirm the stability of these three Mpro-polyphenol complexes. Pharmacokinetic analysis additionally suggested that these polyphenols possess favorable drug-likeness characteristics. Altogether, our study shows that these three polyphenols can be used as potential inhibitors against SARS CoV-2 Mpro and are promising drug candidates for COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Protease Inhibitors , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases , Polyphenols/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2 , Tea
10.
J Biomol Struct Dyn ; 39(17): 6747-6760, 2021 Oct.
Article in English | MEDLINE | ID: mdl-32762411

ABSTRACT

The current COVID-19 pandemic is caused by SARS CoV-2. To date, ∼463,000 people died worldwide due to this disease. Several attempts have been taken in search of effective drugs to control the spread of SARS CoV-2 infection. The main protease (Mpro) from SARS CoV-2 plays a vital role in viral replication and thus serves as an important drug target. This Mpro shares a high degree of sequence similarity (>96%) with the same protease from SARS CoV-1 and MERS. It was already reported that Broussonetia papyrifera polyphenols efficiently inhibit the catalytic activity of SARS CoV-1 and MERS Mpro. But whether these polyphenols exhibit any inhibitory effect on SARS CoV-2 Mpro is far from clear. To understand this fact, here we have adopted computational approaches. Polyphenols having proper drug-likeness properties and two repurposed drugs (lopinavir and darunavir; having binding affinity -7.3 to -7.4 kcal/mol) were docked against SARS CoV-2 Mpro to study their binding properties. Only six polyphenols (broussochalcone A, papyriflavonol A, 3'-(3-methylbut-2-enyl)-3',4',7-trihydroxyflavane, broussoflavan A, kazinol F and kazinol J) had interaction with both the catalytic residues (His41 and Cys145) of Mpro and exhibited good binding affinity (-7.6 to -8.2 kcal/mol). Molecular dynamic simulations (100 ns) revealed that all Mpro-polyphenol complexes are more stable, conformationally less fluctuated; slightly less compact and marginally expanded than Mpro-darunavir/lopinavir complex. Even the number of intermolecular H-bond and MM-GBSA analysis suggested that these six polyphenols are more potent Mpro inhibitors than the two repurposed drugs (lopinavir and darunavir) and may serve as promising anti-COVID-19 drugs.


Subject(s)
Broussonetia , COVID-19 , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Polyphenols , Protease Inhibitors/pharmacology , SARS-CoV-2
11.
J Phys Chem B ; 115(45): 13241-52, 2011 Nov 17.
Article in English | MEDLINE | ID: mdl-21974748

ABSTRACT

The solvation structure and dynamics of ions in aqueous N-methylacetamide (NMA) solutions are calculated using classical molecular dynamics simulations. Our results are analyzed in terms of varying composition ranging from pure NMA to pure water. We also examined the effect of varying water content on the structure and dynamics of a neutral solute. Altogether we have simulated 38 different systems in the present work. It is found that water molecules have preference over NMA for the ions irrespective of their charge and size, whereas the neutral solute is preferably solvated by methyl groups of NMA. The calculated self-diffusion coefficient values show comparatively slower dynamics for ions than the neutral solute which can be attributed to the stronger solvation of ions in aqueous NMA mixtures. Various dynamical properties associated with translational and rotational motion of solvents are also calculated, and similar slower dynamics of solvents is observed which can be attributed to the enhanced stability of the hydrogen bonds and formation of interspecies complexes in the mixtures.


Subject(s)
Solvents/chemistry , Water/chemistry , Acetamides/chemistry , Hydrogen Bonding , Ions/chemistry , Molecular Dynamics Simulation
12.
J Chem Phys ; 134(15): 154506, 2011 Apr 21.
Article in English | MEDLINE | ID: mdl-21513394

ABSTRACT

The structure and dynamical properties of liquid N-methylacetamides (NMA) are calculated at five different temperatures and at four different pressures using classical molecular dynamics simulations. Our results are analyzed in terms of pressure-induced changes in structural properties by investigating the radial distribution functions of different atoms in NMA molecule. It is found that the first peak and also the second peak of C-O and N-H are well defined even at higher temperature and pressure. It is also observed that the number of hydrogen bonds increase with application of pressure at a given temperature. On the other hand, the calculated hydrogen bond energy (E(HB)) shows that the stability of hydrogen bond decreases with increasing of pressure and temperature. Various dynamical properties associated with translational and rotational motion of neat NMA are calculated and the self-diffusion coefficient of NMA is found to be in excellent agreement with the experiment and the behavior is non-Arrhenius at low temperatures with application of pressures. The single particle orientational relaxation time for dipole vector and N-C vector are also calculated and it is found that the orientational relaxation time follows Arrhenius behavior with a variation of temperature and pressure.


Subject(s)
Acetamides/chemistry , Molecular Dynamics Simulation , Pressure , Temperature , Ammonia/chemistry , Diffusion , Hydrogen Bonding , Methanol/chemistry , Water/chemistry
13.
J Chem Phys ; 125(14): 144513, 2006 Oct 14.
Article in English | MEDLINE | ID: mdl-17042615

ABSTRACT

The dynamical properties of the soft sticky dipole-quadrupole-octupole (SSDQO) water model using SPC/E moments are calculated utilizing molecular dynamics simulations. This new potential for liquid water describes the water-water interactions by a Lennard-Jones term and a sticky potential, which is an approximate moment expansion with point dipole, quadrupole, and octupole moments, and reproduces radial distribution functions of pure liquid water using the moments of SPC/E [Ichiye and Tan, J. Chem. Phys. 124, 134504 (2006)]. The forces and torques of SSDQO water for the dipole-quadrupole, quadrupole-quadrupole, and dipole-octupole interactions are derived here. The simulations are carried out at 298 K in the microcanonical ensemble employing the Ewald method for the long-range dipole-dipole interactions. Here, various dynamical properties associated with translational and rotational motions of SSDQO water using the moments of SPC/E (SSDQO:SPC/E) water are compared with the results from SPC/E and also experiment. The self-diffusion coefficient of SSDQO:SPC/E water is found to be in excellent agreement with both SPC/E and experiment whereas the single particle orientational relaxation time for dipole vector is better than SPC/E water but it is somewhat smaller than experiment. The dielectric constant of SSDQO:SPC/E is essentially identical to SPC/E, and both are slightly lower than experiment. Also, molecular dynamics simulations of the SSDQO water model are found to be about twice as fast as three-site models such as SPC/E.


Subject(s)
Models, Chemical , Water/chemistry , Computer Simulation , Models, Molecular , Models, Statistical
14.
J Phys Chem B ; 110(19): 9674-80, 2006 May 18.
Article in English | MEDLINE | ID: mdl-16686518

ABSTRACT

We have carried out a series of molecular dynamics simulations to investigate the dynamics of X(-)-water (X = F, Cl, Br, and I) and water-water hydrogen bonds in aqueous alkali halide solutions at room temperature and also of Cl(-)-water and water-water hydrogen bonds at seven different temperatures ranging from 238 to 318 K. The hydrogen bonds are defined by using a set of configurational criteria with respect to the anion(oxygen)-oxygen and anion(oxygen)-hydrogen distances and the anion(oxygen)-oxygen-hydrogen angle for an anion(water)-water pair. The results of the hydrogen bond dynamics are obtained for two different cutoff values for the angular criterion. In both cases, similar dynamical behavior of the hydrogen bonds is found with respect to their dependence on ion size and temperature. The fluoride ion-water hydrogen bonds are found to break at a much slower rate than water-water hydrogen bonds, while the lifetimes of chloride and bromide ion-water hydrogen bonds are found to be shorter than those of fluoride ion-water ones but still longer than water-water hydrogen bonds. The short-time dynamics of iodide ion-water hydrogen bonds is found to be slightly faster, while its long-time dynamics is found to be slightly slower than the corresponding water-water hydrogen bond dynamics. Correlations of the observed dynamics of anion(water)-water hydrogen bonds with those of rotational and translational diffusion and residence times of water molecules in ion(water) hydration shells are also discussed. With variation of temperature, the lifetimes of both Cl(-)-water and water-water hydrogen bonds are found to show Arrhenius behavior with a slightly higher activation energy for the Cl(-)-water hydrogen bonds.

15.
J Chem Phys ; 124(8): 084507, 2006 Feb 28.
Article in English | MEDLINE | ID: mdl-16512729

ABSTRACT

We have performed a series of molecular dynamics simulations of alkali metal (Li+, Na+, K+, Rb+, and Cs+) and halide (F-, Cl-, Br-, and I-) ions in liquid methanol at two different temperatures to investigate the effects of ion size on the hydration structure and diffusion of ions in methanol under normal and cold conditions. Simulations are also carried out for some of the larger cations such as I+, (CH3)4N+, and (C2H5)4N+ and also neutral alkali metal atoms in methanol at both temperatures. With the increase of ion size, the diffusion coefficients of both positive and negative ions are found to show anomalous behavior. For cations, it is found that the maximum of the diffusion coefficient versus ion size curve occurs at the rather large cation of (CH3)4N+ unlike in water where the maximum occurs at the relatively smaller ion of Rb+. For halide ions, the anomalous behavior, i.e., the increase of diffusion with ion size, continues up to iodide ion and no maximum is observed. These results are in good agreement with experimental observations. The diffusion coefficients of neutral atoms are found to be greater in methanol than that in water and they decrease monotonically with solute size, whereas the diffusion coefficients of the corresponding ions are found to be smaller in methanol. Accordingly, an ion experiences a smaller Stokes friction and a higher dielectric friction in methanol than in water. These contrasting effects are believed to be responsible for the shift of the maximum of ion diffusion toward a larger ion size when compared with similar anomalous size dependence in liquid water.

16.
J Chem Phys ; 123(23): 234501, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16392925

ABSTRACT

We have carried out a series of molecular-dynamics simulations of water-methanol mixtures containing either an ionic or a neutral atomic solute to investigate the effects of composition of the mixture on the diffusion of these solutes. Altogether, we have considered 17 different systems of varying composition ranging from pure water to pure methanol. The diffusion coefficients of ionic solutes are found to show nonideal behavior with variation of composition of the solvent mixture. The extent of nonideality of the solute diffusion is found to be similar to the nonideality that is observed for the diffusion and orientational relaxation of water and methanol molecules in these mixtures and is attributed to the enhanced stability of the hydrogen bonds and formation of interspecies complexes in the mixtures. The neutral solute shows characteristics of hydrophobic solvation and its diffusion decreases monotonically with increase of methanol concentration. The present simulation results are compared with those of experiments wherever available.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(4 Pt 1): 041203, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12443187

ABSTRACT

We have investigated the statistics and dynamics of hydrogen bonds in a concentrated aqueous electrolyte solution and also in pure water by means of molecular dynamics simulations. Both geometric and energetic definitions are employed for the existence of a hydrogen bond. The present study extends our earlier work on the structure and dynamics of hydrogen bonds where only the geometric definition was used [A. Chandra, Phys. Rev. Lett. 85, 768 (2000)]. In the presence of ions, like the earlier results for geometric definition, the energetic definition is also found to give a lower number of hydrogen bonds per water molecule and a wider distribution, a slightly faster rate of breaking and a slower rate of structural relaxation of hydrogen bonds. The results are explained in terms of a decrease of the potential of mean force between water molecules, an enhanced population of hydrogen bonded water pairs in the vicinity of the dividing surface that separates the hydrogen bonded and nonbonded states and an increase of the friction on translational and rotational motion of water molecules in the presence of ions.

SELECTION OF CITATIONS
SEARCH DETAIL
...