Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
ACS Appl Bio Mater ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38616360

ABSTRACT

This study introduces a dual-mode biosensor specifically designed for the quantitative detection of viruses in rapid analysis. The biosensor is unique in its use of both optical (fluorescence) and electrochemical (impedance) detection methods using the same nanocomposites, providing a dual confirmation system for virus (norovirus-like particles) quantification. The system is based on using two antibody-conjugated nanocomposites: CdSeS quantum dots and Au-N,S-GQD nanocomposites. For optical detection, the principle relies on the fluorescence quenching of CdSeS by Au-N,S-GQD in a sandwich structure with the target. Conversely, electrochemical detection is based on the change in impedance caused by the formation of the same sandwich structure. The biosensor demonstrated exceptional sensitivity, capable of detecting norovirus at concentrations of as low as femtomolar in the electrochemical method and picomolar in the optical method. In the dual-responsive concentration range from 10-13 to 10-10 M, the sensor is highly sensitive in both methods, creating significant changes in fluorescence intensity and impedance in the presence of virus. Furthermore, the biosensor exhibits a high degree of specificity, with a negligible response to nontarget proteins, even within complex test solutions. This work represents a significant advancement in the field of biosensor technology, offering a fast, accurate, and reliable method for diagnosing viral infections and diseases.

2.
Mikrochim Acta ; 191(4): 174, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38436801

ABSTRACT

Early diagnosis of dengue infection by detecting the dengue virus non-structural protein 1 (DENV-NS1) is important to the patients to initiate speedy treatment. Enzyme-linked immunosorbent assay (ELISA)-based NS1 detection and RT-PCR are time-consuming and too complex to be employed in remote areas of dengue-endemic countries. Meanwhile, those of NS1 rapid test by lateral flow assay suffer from low detection limit. Electrochemical-based biosensors using screen-printed gold electrodes (SPGEs) have become a reliable detection method to convey both ELISA's high sensitivity and rapid test portability. In this research, we developed an electrochemical biosensor for DENV-NS1 detection by employing polydopamine (PDA)-modified SPGE. The electrodeposition of PDA on the surface of SPGE serves as a bioconjugation avenue for anti-NS1 antibody through a simple and low-cost immobilization procedure. The biosensor performance was evaluated to detect DENV-NS1 protein in PBS and human serum through a differential pulse voltammetric (DPV) technique. The developed sensing platform displayed a low limit of detection (LOD) of 1.63 pg mL-1 and a wide linear range of 10 pg mL-1 to 1 ng mL-1 (R2 ∼ 0.969). The sensing platform also detected DEV-NS1 from four different serotypes in the clinical samples collected from dengue patients in India and Indonesia, with acceptable sensitivity, specificity, and accuracy values of 90.00%, 80.95%, and 87.65%, respectively. This result showcased the facile and versatile method of PDA coating onto the surface of screen-printed gold electrodes for a miniaturized point-of-care (PoC) detection device.


Subject(s)
Dengue Virus , Dengue , Indoles , Point-of-Care Systems , Polymers , Humans , Dengue/diagnosis , Electrodes , Gold , Viral Nonstructural Proteins/chemistry
3.
Biotechnol J ; 18(8): e2300125, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37127933

ABSTRACT

Development of disposable, rapid, and convenient biosensor with high sensitivity and reliability is the most desired method of viral disease prevention. To achieve this goal, in this work, a practical impedimetric biosensor has been implemented into a disposable electrode on a screen-printed carbon electrode (SPCE) for the detection of two mosquito-borne viruses. The biosensor fabrication has step-wisely carried out on the disposable electrode surface at room temperature: starting from conductive film formation, physical binding of the gold nanoparticles (AuNPs)-polyaniline (PAni) into the conductive film, and biofunctionalization. To get the maximum efficiency of the antibody, biotinylated antibody has been conjugated on the surface of AuNP-PAni/PAni-SPCE via the streptavidin-biotin conjugation method which is a critical factor for the high sensitivity. Using the antibody-antigen interaction, this disposable electrode has designed to detect mosquito-borne infectious viruses, Chikungunya virus (CHIKV), and Zika virus (ZIKV) separately in a wide linear range of 100 fg mL-1 to 1 ng mL-1 with a low detection limit of 1.33 and 12.31 fg mL-1 , respectively.


Subject(s)
Biosensing Techniques , Chikungunya virus , Culicidae , Electrodes , Zika Virus , Animals , Biosensing Techniques/instrumentation , Carbon/chemistry , Culicidae/virology , Gold/chemistry , Metal Nanoparticles/chemistry , Reproducibility of Results , Zika Virus/isolation & purification , Zika Virus Infection/prevention & control , Zika Virus Infection/virology , Vector Borne Diseases/prevention & control , Vector Borne Diseases/virology , Chikungunya virus/isolation & purification , Chikungunya Fever/prevention & control , Chikungunya Fever/virology , Limit of Detection , Nanocomposites/chemistry
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122445, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36773421

ABSTRACT

Carbon Quantum Dots (CQDs) are already emerged as an excellent sensing element for its exceptional behavior in fluorescence, biocompatibility, and water dispersibility. However, its poor stability, selectivity and reproducibility in complex medium still be a big problem for its practical application. To overcome this, in the work, we have developed a new type of carbon quantum dot-PSS fluorescent nanocomposites which has been used for specific Fe3+ detection. The polystyrene sulfonate (PSS) polymer not only stabilize the QDs but also produces specific sites for Fe3+ to make a co-ordinate complex via Fe3+-SO3. The detection limit is calculated as low as 1 ppm which is adequate for measuring Fe3+ in blood or water samples. The mechanism of the quenching is very specific towards the Fe3+ ion due to the presence of PSS which makes the sensor selective among other metal ions and possible interferences. The rapid process of sensing, simple instrumentation, and excellent performances in presence of 1 % BSA and serum samples indicates the possible application for diagnostic usage in near future.


Subject(s)
Iron , Quantum Dots , Carbon , Reproducibility of Results , Water , Fluorescent Dyes
5.
Anal Chim Acta ; 1207: 339817, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35491045

ABSTRACT

Signal amplification have been centralized in developing the highly reliable biosensor for analyte detection with a narrow detection window. We proposed an aptasensor to provide a highly sensitive early-stage diagnostic platform of dengue virus NS1 protein (DENV-NS1) by dual-approach - colorimetric and electrochemical detection. This work utilized two different aptamers specific to DENV-NS1: One conjugated to gold nanoparticles (AuNPs), forming AuNPs-Apt1 and its complementary sequence aptamer, forming AuNPs-Apt2. The unbound Apt1 of AuNPs-Apt1 by DENV-NS1 were to hybridize to AuNPs-Apt2 and induced a 3D-nanoassembled formation, resulting in DENV-NS1 concentration-dependent plasmonic color change. Occurrence of the hybridization of Apt1 and Apt2, the 3D-assembled hybridized aptamers of AuNPs was incubated with methylene blue (MB) solution, which intercalated a high number of MB molecules within the duplex structure of aptamers, and the complex was captured on the Apt2-conjugated disposable gold electrode (DGE). The developed aptamer-based biosensor showed high sensitivity with colorimetric response down to 1.28 pg/mL and electrochemical approach down to 30 fg/mL of DENV-NS1 with good selectivity. This work showcases an advanced utilization of aptamer and its complementary anti-sense aptamer in signal amplification and nanocarrier for biosensing.


Subject(s)
Aptamers, Nucleotide , Dengue Virus , Metal Nanoparticles , Aptamers, Nucleotide/chemistry , Electrodes , Gold/chemistry , Metal Nanoparticles/chemistry , Methylene Blue
6.
Biosensors (Basel) ; 11(10)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34677332

ABSTRACT

The treatment for mosquito-borne viral diseases such as dengue virus (DENV), zika virus (ZIKV), and chikungunya virus (CHIKV) has become difficult due to delayed diagnosis processes. In addition, sharing the same transmission media and similar symptoms at the early stage of infection of these diseases has become more critical for early diagnosis. To overcome this, a common platform that can identify the virus with high sensitivity and selectivity, even for the different serotypes, is in high demand. In this study, we have attempted an electrochemical impedimetric method to detect the ZIKV, DENV, and CHIKV using their corresponding antibody-conjugated sensor electrodes. The significance of this method is emphasized on the fabrication of a common matrix of gold-polyaniline and sulfur, nitrogen-doped graphene quantum dot nanocomposites (Au-PAni-N,S-GQDs), which have a strong impedimetric response based only on the conjugated antibody, resulting in minimum cross-reactivity for the detection of various mosquito-borne viruses, separately. As a result, four serotypes of DENV and ZIKV, and CHIKV have been detected successfully with an LOD of femtogram mL-1.


Subject(s)
Biosensing Techniques , Chikungunya Fever , Chikungunya virus , Culicidae , Dengue Virus , Dengue , Vector Borne Diseases , Zika Virus Infection , Zika Virus , Animals , Zika Virus Infection/diagnosis
7.
ACS Sens ; 6(7): 2605-2612, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34076410

ABSTRACT

The social impact of virus spread is immeasurable. Vaccine prophylaxes take considerable time to develop because clinical trials are required. The best initial response to an emerging virus is establishing a virus detection technology adapted by simply preparing virus-specific antibodies. A virus detection system that detects two signals from one analyte has been developed to detect the target virus more sensitively and reliably. Plasmon regions on the surface of nanoparticles are effective in enhancing optical and electrochemical signals. Thus, CdSeTeS quantum dots (QDs) have been used as optical and electrochemical signal-generating materials. In contrast, gold nanoparticle-magnetic nanoparticle-carbon nanotube (AuNP-MNP-CNT) nanocomposites are used for the magnetic separation of the virus from interferences and for signal enhancement. In the presence of the target virus, the QDs optically show a virus concentration-dependent fluorescence enhancement effect due to the localized surface plasmon resonance (LSPR) of AuNPs. Regarding the electrochemical signal, Cd ions eluted by acid degradation of the QDs in solution show a virus concentration-dependent increase in the current peak on an electrode whose electrochemical properties are improved by the deposition of these nanocomposites. Both nanomaterials are conjugated with antibodies specific to influenza virus A (IFV/A), binding this target in a sandwich structure. We are successfully detecting the virus from these two signals during actual virus detection, even when the virus particles are in a human serum matrix. The limit of detection is 2.16 fg/mL for optical detection and 13.66 fg/mL for electrochemical detection.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanocomposites , Gold , Humans , Surface Plasmon Resonance
8.
Mikrochim Acta ; 187(12): 674, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33241435

ABSTRACT

The critical goal of sensitive virus detection should apply in the early stage of infection, which may increase the probable survival rate. To achieve the low detection limit for the early stage where a small number of viruses are present in the sample, proper amplified signals from a sensor can make readable and reliable detection. In this work, a new model of fluorescent and electrochemical dual-mode detection system has been developed to detect virus, taking recombinant Chikungunya virus E1 protein (CHIK-VP) as an example. The hydrophobic quantum dots (QDs) embedded in the lipid bilayer of liposome and methylene blue (MB) encapsulated in the inner core of liposomes played a role of dual-signaling modulator. After CHIK-VP addition, the nanocomposites and APTES-coated Fe3O4 nanoparticles (Fe3O4 NPs) were conjugated with antibodies to form a sandwich structure and separated from the medium magnetically. The nanoconjugates have been burst out by chloroform as surfactant, and both the QDs and MB are released from the liposome and were then monitored through changes in the fluorescence and electrochemical signals, respectively. These two fluorometric and electrochemical signals alteration quantified the CHIK-VP in the range of femtogram to nanogram per milliliter level with a LOD of 32 fg mL-1, making this liposomal system a potential matrix in a virus detection platform. Graphical abstract.


Subject(s)
Chikungunya virus/metabolism , Electrochemical Techniques/methods , Fluorescent Dyes/chemistry , Fluorometry/methods , Liposomes/chemistry , Viral Envelope Proteins/analysis , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Ferrosoferric Oxide/chemistry , Limit of Detection , Magnetite Nanoparticles/chemistry , Methylene Blue/chemistry , Oxidation-Reduction , Quantum Dots/chemistry , Recombinant Proteins/analysis , Recombinant Proteins/biosynthesis , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism
9.
Biosens Bioelectron ; 170: 112680, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33032196

ABSTRACT

Combination of magnetic nanomaterials with multifunctionality is an emerging class of materials that exhibit tremendous potential in advanced applications. Synthesizing such novel nanocomposites without compromising magnetic behavior and introducing added functional properties is proven challenging. In this study, an optically active quantum dot (QD) (core) encapsulated inside iron oxide (hollow shell) is prepared as the first electrochemical/fluorescence dual-modality probe. Presence of magnetic layer on the surface enables excellent magnetic property and the encapsulating of QDs on the hollow shell structure maintains the fluorescence with minimal quenching effect, endowing for potential application with fluorescence modality readout. We successfully demonstrate dual-modality sensing utilizing of QD-encapsulated magnetic hollow sphere nanoparticles (QD@MHS NPs) with magnetic separation ability and highly integrated multimodal sensing for the detection of various viruses including hepatitis E virus (HEV), HEV-like particles (HEV-LPs), norovirus-like particles (NoV-LPs), and norovirus (NoV) from clinical specimens. Most importantly, fecal samples of HEV-infected monkey are successfully diagnosed with sensitivity similar to gold standard real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR). This well-defined QD@MHS NPs-based nanoplatform intelligently integrates dual-modality sensing and magnetic bio-separation, which open a gateway to provide an efficient point-of care testing for virus diagnostics.


Subject(s)
Biosensing Techniques , Nanoparticles , Quantum Dots , Fluorescent Dyes , Magnetics
10.
Biosens Bioelectron ; 170: 112657, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33010704

ABSTRACT

In this report, we have examined the distance- and size-dependent localized surface plasmon resonance (LSPR) between fluorescent quantum dots (QDs) and adjacent gold nanoparticles (AuNPs) to provide a comprehensive evaluation, aiming for practical application in biosensing platform. A series of peptides with different chain lengths, connected between QDs and AuNPs is initially applied to prepare various CdSe QDs-peptide-AuNP systems to optimize LSPR signal. Separation distance between two nanoparticles of these systems before and after conjugation is also confirmed by quantum mechanical modeling and corroborated with their LSPR influenced fluorescence variations. After detailed optimizations, it can be noted that larger sized AuNPs make strong quenching of QDs, which gradually shows enhancement of fluorescence with the increment of distance and the smaller sized AuNPs. Depending on the requirement, it is possible to tune the optimized structure of the CdSe QD-peptide-AuNP nanostructures for the application. In this work, two different structural designs with different peptide chain length are chosen to construct two biosensor systems, observing their fluorescence enhancement and quenching effects, respectively. Using different structural orientation of these biosensors, two nanoconjugates has applied for detection of norovirus and influenza virus, respectively to confirm their application in sensing.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Gold , Nanoconjugates , Surface Plasmon Resonance
11.
J Nanobiotechnology ; 18(1): 152, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33109213

ABSTRACT

BACKGROUND: With the enormous increment of globalization and global warming, it is expected that the number of newly evolved infectious diseases will continue to increase. To prevent damage due to these infections, the development of a diagnostic method for detecting a virus with high sensitivity in a short time is highly desired. In this study, we have developed a disposable electrode with high-sensitivity and accuracy to evaluate its performances for several target viruses. RESULTS: Conductive silicon rubber (CSR) was used to fabricate a disposable sensing matrix composed of nitrogen and sulfur-co-doped graphene quantum dots (N,S-GQDs) and a gold-polyaniline nanocomposite (AuNP-PAni). A specific anti-white spot syndrome virus (WSSV) antibody was conjugated to the surface of this nanocomposite, which was successfully applied for the detection of WSSV over a wide linear range of concentration from 1.45 × 102 to 1.45 × 105 DNA copies/ml, with a detection limit as low as 48.4 DNA copies/ml. CONCLUSION: The engineered sensor electrode can retain the detection activity up to 5 weeks, to confirm its long-term stability, required for disposable sensing applications. This is the first demonstration of the detection of WSSV by a nanofabricated sensing electrode with high sensitivity, selectivity, and stability, providing as a potential diagnostic tool to monitor WSSV in the aquaculture industry.


Subject(s)
Aniline Compounds/chemistry , Graphite/chemistry , Nanowires/chemistry , Quantum Dots/chemistry , Silicone Elastomers/chemistry , White spot syndrome virus 1/chemistry , Biosensing Techniques , Electrochemical Techniques , Electrodes , Gold/chemistry , Humans , Limit of Detection , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Sensitivity and Specificity , Surface Properties
12.
ACS Appl Mater Interfaces ; 12(45): 50212-50221, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-32967416

ABSTRACT

A sensitive virus detection method applicable for an early stage increases the probability of survival. Here, we develop a simple and rapid detection strategy for the detection of the hepatitis E virus (HEV) by an electrocatalytic water oxidation reaction (WOR) using a platinum (Pt)-incorporated cobalt (Co)-based zeolite imidazole framework (ZIF-67). The surface cavity of ZIF-67 enables the rich loading of Pt NPs, and subsequent calcination etches the cavity, promoting the electrocatalytic activity of Pt-Co3O4 HCs. The Pt-Co3O4 HCs show excellent behavior for the WOR due to the synergistic interaction of Pt and Co3O4, evaluated by voltammetry and chronoamperometry. The synthesized Pt-Co3O4 HCs are conjugated with anti-HEV antibody (Ab@Pt-Co3O4 HCs); the electrocatalytic activity of Ab@Pt-Co3O4 HCs is combined with that of antibody-conjugated magnetic nanoparticles (MNPs) for HEV detection by a magneto-and-nanocomposite sandwich immunoassay. The sensor is challenged to detect the HEV in spiked serum samples and HEV G7 genotypes collected from the cell culture supernatant, reaching a low limit of detection down to 61 RNA copies mL-1. This work establishes a free-indicator one-step approach with the controlled design of Pt-Co3O4 HCs, which presents an effective WOR technique for virus detection in a neutral pH solution, which can be extended to electrocatalytic studies in the future integrated biosensing systems.


Subject(s)
Biosensing Techniques , Cobalt/chemistry , Electrochemical Techniques , Hepatitis E virus/isolation & purification , Oxides/chemistry , Platinum/chemistry , Water/chemistry , Catalysis , Oxidation-Reduction , Particle Size , Porosity , Surface Properties , Zeolites/chemistry
13.
Anal Chim Acta ; 1110: 64-71, 2020 May 08.
Article in English | MEDLINE | ID: mdl-32278401

ABSTRACT

Rapid increasing outbreak of Hepatitis E virus (HEV) shows an urgent need of HEV detection. Instead of time consuming and expensive RT-qPCR, an efficient and quick monitoring system is in utmost demand which can be comparable with the RT-qPCR in term of reliability and detection limit. An advanced platform for immunoassay has been constructed in this study by a nanozyme that constitutes anti-HEV IgG antibody-conjugated gold nanoparticles (Ab-AuNPs) as core and in situ silver deposition on the surface of Ab-AuNPs as outer shell. The virus has been entrapped on the nanocomposites while the silver-shell has decomposed back to the silver ions (Ag+) by adding a tetramethylbenzidine (TMBZ) and hydrogen peroxide (H2O2) which indirectly quantifies the target virus concentration. Counterpart to only applying nanozyme, by incorporation of the enhanced effect of Ag shell on the AuNP-based nanozyme, the advance deposition has been confirmed to prove the signal amplification mechanism in the proposed immunoassay. Most importantly, the sensor performances have examined on the HEV, collected from the HEV-infected monkey over a period of 45 days. It was successfully correlated with the standard RT-qPCR data, showing the applicability of this immunoassay as a real-time monitoring on the HEV infection. The in situ formation of AuNPs@Ag as nanozyme in this capture immunoassay leads to a promising advancement over the conventional methods and nanozyme-based immunoassay in real application which can be a good substitute of RT-qPCR in near future.


Subject(s)
Biosensing Techniques , Hepatitis E virus/isolation & purification , Immunoassay , Animals , Gold/chemistry , Haplorhini , Hepatitis E virus/genetics , Metal Nanoparticles/chemistry , Real-Time Polymerase Chain Reaction , Silver/chemistry , Time Factors
14.
Anal Chim Acta ; 1109: 148-157, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32252898

ABSTRACT

In this study, a tunable biosensor using the localized surface plasmon resonance (LSPR), controlling the distance between fluorescent CdZnSeS/ZnSeS quantum dots (QDs) and gold nanoparticles (AuNPs) has been developed for the detection of virus. The distance between the AuNPs and QDs has been controlled by a linkage with a peptide chain of 18 amino acids. In the optimized condition, the fluorescent properties of the QDs have been enhanced due to the surface plasmon effect of the adjacent AuNPs. Successive virus binding on the peptide chain induces steric hindrance on the LSPR behavior and the fluorescence of QDs has been quenched. After analyzing all the possible aspect of the CdZnSeS/ZnSeS QD-peptide-AuNP nanocomposites, we have detected different concentration of influenza virus in a linear range of 10-14 to 10-9 g mL-1 with detection limit of 17.02 fg mL-1. On the basis of the obtained results, this proposed biosensor can be a good alternative for the detection of infectious viruses in the various range of sensing application.


Subject(s)
Fluorescent Dyes/chemistry , Fluorometry , Gold/chemistry , Nanocomposites/chemistry , Orthomyxoviridae/isolation & purification , Quantum Dots/chemistry , Biosensing Techniques , Surface Plasmon Resonance
15.
Biosens Bioelectron ; 157: 112169, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32250939

ABSTRACT

Sensitive and accurate detection methods for infectious viruses are the pressing need for effective disease diagnosis and treatment. Herein, based on V2O5 nanoparticles-encapsulated liposomes (VONP-LPs) we demonstrate a dual-modality sensing platform for ultrasensitive detection of the virus. The sensing performance relies on intrinsic peroxidase and electrochemical redox property of V2O5 nanoparticles (V2O5 NPs). The target-specific antibody-conjugated VONP-LPs and magnetic nanoparticles (MNPs) enrich the virus by magnetic separation and the separated VONP-LPs bound viruses are hydrolyzed to release the encapsulated V2O5 NPs. These released nanoparticles from captured liposomes act as peroxidase mimics and electrochemical redox indicator resulting in noticeable colorimetric and robust electrochemical dual-signal. Utilizing the superiority of dual-modality sensor with two quantitative analysis forms, norovirus like particles (NoV-LPs) can be detected by electrochemical signals with a wide linear range and low detection limit. To verify the applicability in real samples, norovirus (NoV) collected from actual clinical samples are effectively-identified with excellent accuracy. This proposed detection method can be a promising next-generation bioassay platform for early-stage diagnosis of virus disease and surveillance for public health.


Subject(s)
Biosensing Techniques/methods , Liposomes/chemistry , Norovirus/isolation & purification , Vanadium Compounds/chemistry , Caliciviridae Infections/diagnosis , Caliciviridae Infections/virology , Colorimetry/methods , Electrochemical Techniques/methods , Humans , Limit of Detection , Nanoparticles/chemistry , Oxidation-Reduction
16.
ACS Appl Bio Mater ; 3(6): 3560-3568, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-35025226

ABSTRACT

Viral diseases are one of the most life-threatening diseases as they can erupt unpredictably and spread rapidly in any medium with a very small number of particles. Therefore, the key for lethal virus detection should be highly sensitive in the early-stage detection, which can help increase the chance of survival. Amplification of the detecting signal is one of the most promising mechanisms for the detection of low-concentration analytes. A proper amplification can develop such a kind of system where a small number of particles can produce intense signals for a prominent detection. Keeping this in mind, in this report, we have presented a fluorometric method to detect norovirus (NoV) by a newly developed fluorophore-labeled liposome and a magnetically modified Fe3O4 combined system. Homogeneously distributed amine-functionalized liposomes have been constructed filled with a strong fluorophore of calcein. Simultaneously, (3-aminopropyl)-triethoxysilane (APTES)-functionalized Fe3O4 nanoparticles are also synthesized by the standard silanization process, and these two separately synthesized nanoparticles were functionalized with an antibody to achieve specificity. The Fe3O4 and calcein-liposome system has been applied for NoV detection, which was magnetically separated from the analyte medium and then externally burst to release the fluorophores from the core of the liposome. The easiness, rapidity, and sensitivity in a wide linear range can offer a huge potential of this method in point-of-care diagnostics.

17.
Nanoscale Adv ; 2(2): 699-709, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-36133234

ABSTRACT

The dengue hemorrhagic fever or dengue shock syndrome has become a severe human fatal disease caused by infection with one of the four closely related but serologically distinct dengue viruses (DENVs). All four dengue serotypes are currently co-circulating throughout the subtropics and tropics. Since the fatality rate increases severely when a secondary infection occurs by a virus serotype different from that of the initial infection, serotype identification is equally important as virus detection. In this study, the development and validation of a rapid and quantitative DENV serotype-specific (serotypes 1-4) biosensor are reported by optimizing the stable system between cadmium selenide tellurium sulphide fluorescent quantum dots (CdSeTeS QDs) and gold nanoparticles (AuNPs). Four different nanoprobes are designed using each primer-probe serotype-specific hairpin single-stranded DNA covalently bound at different positions to CdSeTeS QDs, which generates an altered fluorescence signal for each serotype of DENV. In fourplex reactions with free functionalized AuNPs and the four nanoprobes, the standard dilutions of the target virus DNA from 10-15 to 10-10 M were successfully detected. The limit of detection was found to be in the femtomolar range for all four serotypes, where the serotype detection ability was undoubtedly established. To confirm the applicability of this sensing performance in long chained complex RNAs, the sensor was also applied successfully to RNAs extracted from DENV culture fluids for serotype identification as well as quantification, which can lead to a potential diagnostic probe for point-of-care detection.

18.
Nat Commun ; 10(1): 3737, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31427581

ABSTRACT

Hepatitis E virus (HEV) is one of the leading causes of acute viral hepatitis worldwide. In this work, a pulse-triggered ultrasensitive electrochemical sensor was fabricated using graphene quantum dots and gold-embedded polyaniline nanowires, prepared via an interfacial polymerization and then self-assembly approach. Introducing an external electrical pulse during the virus accumulation step increases the sensitivity towards HEV due to the expanded surface of the virus particle as well as the antibody-conjugated polyaniline chain length, compared to other conventional electrochemical sensors. The sensor was applied to various HEV genotypes, including G1, G3, G7 and ferret HEV obtained from cell culture supernatant and in a series of fecal specimen samples collected from G7 HEV-infected monkey. The sensitivity is similar to that detected by real-time quantitative reverse transcription-polymerase chain (RT-qPCR). These results suggests that the proposed sensor can pave the way for the development of robust, high-performance sensing methodologies for HEV detection.


Subject(s)
Biosensing Techniques/methods , Electrochemical Techniques/methods , Hepatitis E virus/isolation & purification , Hepatitis E/diagnosis , Aniline Compounds/chemistry , Animals , Cell Line, Tumor , Feces/virology , Ferrets/virology , Gold/chemistry , Graphite/chemistry , Hepatitis E/virology , Humans , Macaca fascicularis/virology , Moths/virology , Nanowires/chemistry , Quantum Dots/chemistry , Sensitivity and Specificity
19.
Biosens Bioelectron ; 122: 95-103, 2018 Dec 30.
Article in English | MEDLINE | ID: mdl-30245327

ABSTRACT

The successful development of selective detection of cancer cells from normal cells is a highly demanded but challenging task. Herein, we have developed a rapid and label-free impedimetric biosensor for quantitative determination of cancer cells with high glycoprotein expression. Homogenously distributed 2-9 nm graphene quantum dots (GQDs) was anchored on the surface Fe3O4 through covalent bonding. Concovalin A (ConA) was then adhered onto GQDs by physical mixing to fabricate ConA-GQD@Fe3O4 nanosensing probe. A good dynamic range in the cell concentration of 5 × 102-1 × 105 cells mL-1 with LOD values of 246 and 367 cells mL-1 for HeLa and MCF-7, respectively, is obtained. The impedimetric responses to the cancerous HeLa and MCF-7 cells are 16.7 and 13.1 times higher than those of their original sensor electrodes. However, the interaction between sensing probe and normal MCF-10 and bEnd.3 cells is negligible, confirming the specific selectivity toward cancer cells. Cellular uptake images as well as in-vitro cytotoxicity corroborates the electrochemical results. In addition, the successful detection of cancer cells in human serum and circulating tumor cells in blood sample envisions the feasibility of using ConA-GQD@Fe3O4 as the nanosensing probe for clinically early diagnosis of cancer cells with high glycoprotein expression.


Subject(s)
Biosensing Techniques/methods , Concanavalin A/chemistry , Graphite/chemistry , Neoplasms/diagnosis , Quantum Dots/chemistry , Carbohydrates/analysis , Cell Line , Electric Impedance , Electrodes , Glycoproteins/analysis , HeLa Cells , Humans , Immobilized Proteins/chemistry , MCF-7 Cells , Quantum Dots/ultrastructure
20.
Biosens Bioelectron ; 122: 16-24, 2018 Dec 30.
Article in English | MEDLINE | ID: mdl-30236804

ABSTRACT

A new method of label free sensing approach with superior selectivity and sensitivity towards virlabel-freeon is presented here, employing the localized surface plasmon resonance (LSPR) behavior of gold nanoparticles (AuNPs) and fluorescent CdSeTeS quantum dots (QDs). Inorganic quaternary alloyed CdSeTeS QDs were capped with L-cysteine via a ligand exchange reaction. Alternatively, citrate stabilized AuNPs were functionalized with 11-mercaptoundecanoic acid to generate carboxylic group on the gold surface. The carboxylic group on the AuNPs was subjected to bind covalently with the amine group of L-cysteine capped CdSeTeS QDs to form CdSeTeS QDs/AuNPs nanocomposites. The fluorescence of CdSeTeS QDs/AuNPs nanocomposite shows quenched spectrum of CdSeTeS QDs at 640 nm due to the close interaction with AuNPs. However, after successive addition of norovirus-like particles (NoV-LPs), steric hindrance-induced LSPR signal from the adjacent AuNPs triggered the fluorescence enhancement of QDs in proportion to the concentration of the target NoV-LPs. A linear range of 10-14 to 10-9 g mL-1 NoV-LPs with a detection limit of 12.1 × 10-15 g mL-1 was obtained. This method was further applied on clinically isolated norovirus detection, in the range of 102-105 copies mL-1 with a detection limit of 95.0 copies mL-1, which is 100-fold higher than commercial ELISA kit. The superiority of the proposed sensor over other conventional sensors is found in its ultrasensitive detectability at low virus concentration even in clinically isolated samples. This proposed detection method can pave an avenue for the development of high performance and robust sensing probes for detection of virus in biomedical applications.


Subject(s)
Cadmium Compounds/chemistry , Caliciviridae Infections/diagnosis , Gold/chemistry , Metal Nanoparticles/chemistry , Norovirus/isolation & purification , Quantum Dots/chemistry , Selenium Compounds/chemistry , Surface Plasmon Resonance/methods , Caliciviridae Infections/virology , Feces/virology , Humans , Limit of Detection , Surface Plasmon Resonance/economics , Tellurium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...