Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 59(18): 13371-13382, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32870665

ABSTRACT

A new molecular donor-acceptor-donor (D-A-D) triad, comprised of an electron deficient 1,4,5,8-naphthalene tetracarboxylic diimide (NDI) unit covalently connected to two flanking photosensitizers, i.e., a bis-heteroleptic Ru(II) complex of 1,10-phenanthroline and pyridine triazole hybrid ligand, is described. The single crystal X-ray structure of the perchlorate salt of the triad demonstrates that the electron deficient NDI unit can act as a host for anions via anion-π interaction. Detailed solution-state studies indicate that fluoride selectively interacts with the D-A-D triad to form a dianionic NDI, NDI2-, via a radical anion, NDI•-. On the contrary, cyanide reduces the NDI moiety to NDI•-, as confirmed by UV-vis, NMR, and EPR spectroscopy. Further, femtosecond transient absorption spectroscopic studies reveal a low luminescence quantum yield of the D-A-D triad attributable to the photoinduced electron transfer (PET) process from the photoactive Ru(II) center to the NDI unit. Interestingly, the triad displays "OFF-ON" luminescence behavior in the presence of fluoride by restoring the Ru(II) to phenanthroline/pyridine-triazole-based MLCT emission, whereas cyanide fails to show a similar property due to a different redox process operational in the latter. The reduction of NDI in the presence of fluoride and cyanide in different polar solvents indicates that involvement of such deprotonated solvents in the electron transfer mechanism may not be operative in our present system. Low-temperature kinetic studies support the formation of a charge transfer associative transient species, which likely allows overcoming the thermodynamically uphill barrier for the direct electron transfer mechanism.

2.
Inorg Chem ; 58(23): 15993-16003, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31702136

ABSTRACT

A new bis-heteroleptic RuII complex (1[PF6]2) with iodotriazole as the anion binding group along with the attached pyrene moiety is developed to investigate anion sensing properties and the origin of its selectivity toward a particular class of anions. Selective sensing of phosphates over other anions in both the solution and solid states by 1[PF6]2 is clearly evident from the perturbation of the absorption band and a large degree of amplification of 3MLCT emission band in the presence of phosphates. Importantly, macroscopic investigation such as Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS) indicated the formation of supramolecular architecture in the presence of dihydrogen phosphate via halogen bonding interaction and π-π stacking of pyrene moieties. Such macroscopic property is further corroborated by solution and solid state spectroscopic studies, e.g., 1H-DOSY NMR, single crystal X-ray crystallography, and solid state photoluminescence (PL) spectroscopy.

3.
Chem Commun (Camb) ; 55(35): 5127-5130, 2019 Apr 25.
Article in English | MEDLINE | ID: mdl-30973568

ABSTRACT

The solid state bright white light emission and mechanochromic behavior of 1-(1H-phenanthro[9,10-d]imidazol-2-yl)naphthalen-2-ol, 1H, are described. Further, 1H can be used as a highly sensitive ratiometric luminescence sensor for Al3+ and pyrophosphate in solution.

4.
Dalton Trans ; 47(19): 6819-6830, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29725677

ABSTRACT

A quinoline-based C3-symmetric fluorescent probe (1), N,N',N''-((2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene))tris(1-(quinolin-2-yl)-N-(quinolin-2-ylmethyl)methanamine), has been developed which can selectively detect Zn2+ without the interference of Cd2+via significant enhancement in emission intensity (fluorescence "turn-ON") associated with distinct fluorescence colour changes and very low detection limits (35.60 × 10-9 M in acetonitrile and 29.45 × 10-8 M in 50% aqueous buffer (10 mM HEPES, pH = 7.4) acetonitrile media). Importantly, this sensor is operative with a broad pH window (pH 4-10). The sensing phenomenon has been duly studied through UV-vis, steady-state, and time-resolved fluorescence spectroscopic methods indicating 1 : 3 stoichiometric binding between 1 and Zn2+ which is further corroborated by 1H NMR studies. Density functional theoretical (DFT) calculations provide the optimized molecular geometry and properties of the zinc complex, 1[Zn(ClO4)]33+, which is proposed to be formed in acetonitrile. The results are in line with the solution-state experimental findings. The single crystal X-ray study provides the solid state structure of the trinuclear Zn2+ complex showing solubility in an aqueous buffer (10 mM HEPES, pH = 7.4). Finally, the resulting trinuclear Zn2+ complex has been utilized as a fluorescence "turn-OFF" sensor for the selective detection of pyrophosphate in a 70% aqueous buffer (10 mM HEPES, pH = 7.4) acetonitrile solvent with a nanomolar detection limit (45.37 × 10-9 M).

5.
Inorg Chem ; 56(9): 5371-5382, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28414235

ABSTRACT

A new bis-heteroleptic RuII complex based ditopic receptor, 1[PF6]2, having an anion binding triazole -CH unit and appended 4-fluorophenyl urea arm has been developed. 1H NMR and isothermal titration calorimetry (ITC) experiments showed binding of 1[PF6]2 toward oxyanions such as phosphates (e.g., H2PO4- and HP2O73-) and carboxylates (e.g., CH3CO2- and C6H5CO2-) anions selectively. 1H NMR studies showed that highly basic phosphate anions such as HP2O73-/H2PO4- are bound by both -CH and -NH units of complex 1[PF6]2. However, comparatively less basic CH3CO2-, C6H5CO2- anions interacted with the urea -NH protons only. Thermodynamic parameters obtained from ITC experiments suggested that binding of all the interacting anions with complex 1[PF6]2 are highly enthalpy and entropy driven processes. Importantly, complex 1[PF6]2 showed extraction of H2PO4-, CH3CO2-, and C6H5CO2- anions from aqueous solution via liquid-liquid extraction with efficiencies of 28%, 74%, and 80%, respectively. The influential role of the urea moiety in the course of extraction is demonstrated by comparison with a model complex, 2[PF6]2. Additionally, complex 1[PF6]2 is capable of selective sensing of phosphate anions among all investigated anions.

6.
Chemistry ; 22(50): 18051-18059, 2016 Dec 12.
Article in English | MEDLINE | ID: mdl-27805754

ABSTRACT

The selective phosphate-sensing property of a bis-heteroleptic RuII complex, 1[PF6 ]2 , which has a halogen-bonding iodotriazole unit, is demonstrated and is shown to be superior to its hydrogen-bonding analogue, 2[PF6 ]2 . Complex 1[PF6 ]2 , exploiting halogen-bonding interactions, shows enhanced phosphate recognition in both acetonitrile and aqueous acetonitrile compared with its hydrogen-bonding analogue, owing to considerable amplification of the RuII -center-based metal-to-ligand charge transfer (MLCT) emission response and luminescence lifetime. Detailed solution-state studies reveal a higher association constant, lower limit of detection, and greater change in lifetime for complex 1 in the presence of phosphates compared with its hydrogen-bonding analogue, complex 2. The 1 H NMR titration study with H2 PO4- ascertains that the binding of H2 PO4- occurs exclusively through halogen-bonding or hydrogen-bonding interactions in complexes 1[PF6 ]2 and 2[PF6 ]2 , respectively. Importantly, the single-crystal X-ray structure confirms the first ever report on metal-assisted second-sphere recognition of H2 PO4- and H2 P2 O72- with 1 through a solitary C-I⋅⋅⋅anion halogen-bonding interaction.

7.
Inorg Chem ; 55(18): 9212-20, 2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27571218

ABSTRACT

An excited-state intramolecular proton transfer (ESIPT)-based highly sensitive ratiometric fluorescence sensor, 1H was developed for selective detection of aluminum (Al(3+)) in acetonitrile as well as in 90% aqueous system. Single-crystal X-ray diffraction analysis reveals almost planar and conjugated structure of 1H. Photophysical properties of the sensor as well as its selectivity toward Al(3+) are explored using UV-visible, steady-state, and time-resolved fluorescence spectroscopic studies. The bright cyan (λem = 445 nm) fluorescence of 1H in acetonitrile turns into deep blue (λem = 412 nm) with ∼2.3-fold enhancement in emission intensity, in the presence of parts per billion level Al(3+) (detection limit = 0.5 nM). Interestingly, the probe 1H exhibits increased selectivity toward Al(3+) in H2O/acetonitrile (9:1 v/v) solvent system with a change in fluorescence color from pale green to deep blue associated with ca. sixfold enhancement in emission intensity. Density functional theoretical (DFT) calculations provide the ground- and excited-state energy optimized structures and properties of the proposed aluminum complex [Al(1) (OH)]2(2+), which is in harmony with the solution-state experimental findings and also supports the occurrence of ESIPT process in 1H. The ESIPT mechanism was also ascertained by comparing the basic photophysical properties of 1H with a similar O-methylated analogue, 1'Me.

8.
Inorg Chem ; 55(1): 259-71, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26653882

ABSTRACT

A new bis-heteroleptic trinuclear Ru(II) complex (1[PF6]6) has been synthesized from electron deficient cyanuric acid platform based copper-catalyzed azide-alkyne cycloaddition, i.e., CuAAC click generated ligand, 1,3,5-tris [(2-aminoethyl-1H-1,2,3-triazol-4-yl)-pyridine]-1,3,5-triazinane-2,4,6-trione (L1). Complex 1[PF6]6 displays weak luminescence (ϕf = 0.002) at room temperature with a short lifetime of ∼5 ns in acetonitrile. It shows selective sensing of hydrogen pyrophosphate (HP2O7(3-)) through 20-fold enhanced emission intensity (ϕf = 0.039) with a 15 nm red shift in emission maxima even in the presence of a large excess of various competitive anions like F(-), Cl(-), AcO(-), BzO(-), NO3(-), HCO3(-), HSO4(-), HO(-), and H2PO4(-) in acetonitrile. Selective change in the decay profile as well as in the lifetime of 1[PF6]6 in the presence of HP2O7(3-) (108 ns) further supports its selectivity toward HP2O7(3-). UV-vis and photoluminescence titration profiles and corresponding Job's plot analyses suggest 1:3 host-guest stoichiometric binding between 1[PF6]6 and HP2O7(3-). High emission enhancement of 1[PF6]6 in the presence of HP2O7(3-) has resulted in the detection limit of the anion being as low as 0.02 µM. However, 1[PF6]6 shows selectivity toward higher analogues of phosphates (e.g., ATP, ADP, and AMP) over HP2O7(3-)/H2PO4(-) in 10% Tris HCl buffer (10 mM)/acetonitrile medium. Downfield shifting of the triazole C-H in a (1)H NMR titration study confirms that the binding of HP2O7(3-)/H2PO4(-) is occurring via C-H···anion interaction. The single crystal X-ray structure of complex 1 having NO3(-) counteranion, 1[NO3]6 shows binding of NO3(-) with complex 1 via C-H···NO3(-) interactions.

9.
Inorg Chem ; 53(15): 8061-70, 2014 Aug 04.
Article in English | MEDLINE | ID: mdl-25052811

ABSTRACT

A new bis-heteroleptic ruthenium(II) complex (1) of 2-(1-methyl-1H-1,2,3-triazol-4-yl) pyridine (L) ligand was extensively explored for anion sensing studies. 1[PF6]2 shows selective sensing of dihydrogen phosphate (H2PO4(-))/hydrogen pyrophosphate (HP2O7(3-)) among halides, HCO3(-), AcO(-), NO3(-), ClO4(-), HSO4(-), OH(-), BzO(-), H2PO4(-), and HP2O7(3-) in acetonitrile. Enhancement of emission intensity of 1[PF6]2 along with a 10 nm red shift of the emission maximum is observed in the presence of H2PO4(-)/HP2O7(3-) selectively. The photoluminescence (PL) titration experiment of 1[PF6]2 results in binding constants (K(a)) of 5.28 × 10(4) M(-1) and 4.67 × 10(4) M(-1) for H2PO4(-) and HP2O7(3-), respectively, which is in good agreement with the Ka values obtained from UV-vis titration experiments (2.97 × 10(4) M(-1) and 2.45 × 10(4) M(-1) for H2PO4(-) and HP2O7(3-), respectively). High selectivity of 1[PF6]2 toward these two anions in acetonitrile is further confirmed by PL intensity measurement of 1[PF6]2 upon addition of these two anions in the presence of a large excess of other competitive anions. Further, considerable changes in the lifetime (τ) as well as in the decay pattern of 1[PF6]2 in the presence of H2PO4(-)/HP2O7(3-) among all tested anions support the selective binding property of 1[PF6]2 toward these two anions. Significant downfield shift of the triazole -CH proton of 1[PF6]2 with 1 equiv of H2PO4(-) (Δδ = 0.26 ppm) and HP2O7(3-) (Δδ = 0.23 ppm) in deuterated dimethyl sulfoxide proclaim binding mechanism via C-H···anion interaction in solution state. Finally, single-crystal X-ray structural analysis confirms the first example of dihydrogen pyrophosphate (H2P2O7(2-)) recognition via solitary C-H···anion interactions.


Subject(s)
Organometallic Compounds/chemical synthesis , Phosphates/metabolism , Ruthenium/chemistry , Triazoles/chemistry , Ligands , Magnetic Resonance Spectroscopy , Organometallic Compounds/metabolism , Spectrophotometry, Ultraviolet , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...