Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Nano Mater ; 6(7): 6230-6240, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37092122

ABSTRACT

Thin-film organic photovoltaic (OPV) devices represent an attractive alternative to conventional silicon solar cells due to their lightweight, flexibility, and low cost. However, the relatively low optical absorption of the OPV active layers still represents an open issue in view of efficient devices that cannot be addressed by adopting conventional light coupling strategies derived from thick PV absorbers. The light coupling to thin-film solar cells can be boosted by nanostructuring the device interfaces at the subwavelength scale. Here, we demonstrate broadband and omnidirectional photon harvesting in thin-film OPV devices enabled by highly ordered one-dimensional (1D) arrays of nanogrooves. Laser interference lithography, in combination with reactive ion etching (RIE), provides the controlled tailoring of the height and periodicity of the silica grooves, enabling effective tuning of the anti-reflection properties in the active organic layer (PTB7:PCBM). With this strategy, we demonstrate a strong enhancement of the optical absorption, as high as 19% with respect to a flat device, over a broadband visible and near-infrared spectrum. The OPV device supported on these optimized nanogrooved substrates yields a 14% increase in short-circuit current over the corresponding flat device, highlighting the potential of this large-scale light-harvesting strategy in the broader context of thin-film technologies.

2.
Nanoscale ; 15(4): 1953-1961, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36625311

ABSTRACT

Novel light harvesting platforms and strategies are crucial to develop renewable photon to energy conversion technologies that overcome the current global energy and environmental challenges. Two-dimensional (2D) transition metal dichalcogenide (TMD) semiconductor layers are particularly attractive for photoconversion applications but new ultra-compact photon harvesting schemes are urgently required to mitigate their poor photon absorption properties. Here, we propose a flat-optics scheme based on nanogrooved ultra-thin MoS2 layers conformally grown onto large area (cm2 scale) nanopatterned templates. The subwavelength re-shaping of the 2D-TMD layers promotes the excitation of photonic Rayleigh anomaly (RA) modes, uniquely boosting a strong in-plane electromagnetic confinement. By tailoring the illumination conditions, we demonstrate effective tuning of the photonic anomalies over a broadband visible spectrum across the absorption band of relevant polluting dye molecules. Thanks to the strong photonic in-plane confinement, we achieve a resonant enhancement of the photodissociation rate of methylene blue (MB) molecules, well above a factor of 2. These results highlight the potential of flat-optics photon harvesting schemes for boosting photoconversion efficiency in large-scale hybrid 2D-TMD/polymer layers, with a strong impact in various applications ranging from new-generation photonics to waste water remediation and renewable energy storage.

3.
Opt Express ; 30(10): 17371-17382, 2022 May 09.
Article in English | MEDLINE | ID: mdl-36221562

ABSTRACT

Flat optics nanogratings supported on thin free-standing membranes offer the opportunity to combine narrowband waveguided modes and Rayleigh anomalies for sensitive and tunable biosensing. At the surface of high-refractive index Si3N4 membranes we engineered lithographic nanogratings based on plasmonic nanostripes, demonstrating the excitation of sharp waveguided modes and lattice resonances. We achieved fine tuning of these optical modes over a broadband Visible and Near-Infrared spectrum, in full agreement with numerical calculations. This possibility allowed us to select sharp waveguided modes supporting strong near-field amplification, extending for hundreds of nanometres out of the grating and enabling versatile biosensing applications. We demonstrate the potential of this flat-optics platform by devising a proof-of-concept nanofluidic refractive index sensor exploiting the long-range waveguided mode operating at the sub-picoliter scale. This free-standing device configuration, that could be further engineered at the nanoscale, highlights the strong potential of flat-optics nanoarrays in optofluidics and nanofluidic biosensing.


Subject(s)
Biosensing Techniques , Light , Optics and Photonics , Refractometry
4.
Nanotechnology ; 33(30)2022 May 06.
Article in English | MEDLINE | ID: mdl-35385839

ABSTRACT

Highly porous Germanium surfaces with uniformly distributed columnar nanovoid structures are fabricated over a large area (wafer scale) by large fluence Sn+irradiation through a thin silicon nitride layer. The latter represents a one-step highly reproducible approach with no material loss to strongly increase photon harvesting into a semiconductor active layer by exploiting the moth-eye antireflection effect. The ion implantation through the nitride cap layer allows fabricating porous nanostructures with high aspect ratio, which can be tailored by varying ion fluence. By comparing the reflectivity of nanoporous Ge films with a flat reference we demonstrate a strong and omnidirectional reduction in the optical reflectivity by a factor of 96% in the selected spectral regions around 960 nm and by a factor of 67.1% averaged over the broad spectral range from 350 to 1800 nm. Such highly anti-reflective nanostructured Ge films prepared over large-areas with a self-organized maskless approach have the potential to impact real world applications aiming at energy harvesting.

5.
Phys Chem Chem Phys ; 23(15): 9611, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33885097

ABSTRACT

Correction for 'Observation of ordered arrays of endotaxially grown nanostructures from size-selected Cu-nanoclusters deposited on patterned substrates of Si' by Shyamal Mondal et al., Phys. Chem. Chem. Phys., 2021, 23, 6009-6016 DOI: 10.1039/D0CP06089E.

6.
Phys Chem Chem Phys ; 23(10): 6009-6016, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33666603

ABSTRACT

We report the first time observation of endotaxial growth during thermal treatment of size-selected nanoclusters on a patterned substrate, when we fabricate highly ordered and partially embedded 3D crystalline Cu nanostructure arrays of controlled size in Si-substrates. For this purpose, we combine low energy cluster deposition on the ripple-patterned substrate with controlled annealing. We have investigated, in detail, the effect of the substrate pattern on the deposited size-selected clusters upon heat treatment. At the annealing temperature of 400 °C, nanosized islands are found to be organized into regular arrays, following the alignment of the substrate pattern exactly. The formed islands are trapped at the specific sites of the substrate where surface curvature is maximum and concave. It is also observed that the size of the produced nanoislands (or particles) in the direction of the ripple wave vector, i.e., across the ripples, are in congruence with the ripple wavelength. All the formed islands are partially buried in the substrate and the growth inside the substrate exhibits endotaxial growth. Such an embedded size-controlled nanoscale system can be very promising as sinter-resistant heterogenous catalyst with strong potential in clean energy technology and industrial chemical synthesis.

7.
ACS Appl Mater Interfaces ; 13(11): 13508-13516, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33687194

ABSTRACT

Nanofabrication of flat optic silica gratings conformally layered with two-dimensional (2D) MoS2 is demonstrated over large area (cm2), achieving a strong amplification of the photon absorption in the active 2D layer. The anisotropic subwavelength silica gratings induce a highly ordered periodic modulation of the MoS2 layer, promoting the excitation of Guided Mode Anomalies (GMA) at the interfaces of the 2D layer. We show the capability to achieve a broadband tuning of these lattice modes from the visible (VIS) to the near-infrared (NIR) by simply tailoring the illumination conditions and/or the period of the lattice. Remarkably, we demonstrate the possibility to strongly confine resonant and nonresonant light into the 2D MoS2 layers via GMA excitation, leading to a strong absorption enhancement as high as 240% relative to a flat continuous MoS2 film. Due to their broadband and tunable photon harvesting capabilities, these large area 2D MoS2 metastructures represent an ideal scalable platform for new generation devices in nanophotonics, photo- detection and -conversion, and quantum technologies.

8.
Nanoscale ; 12(48): 24385-24393, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33320146

ABSTRACT

Flat optics nanoarrays based on few-layer MoS2 are homogeneously fabricated over large-area (cm2) transparent templates, demonstrating effective tailoring of the photon absorption in two-dimensional (2D) transition-metal dichalcogenide (TMD) layers. The subwavelength subtractive re-shaping of the few-layer MoS2 film into a one-dimensional (1D) nanostripe array results in a pronounced photonic anomaly, tunable in a broadband spectral range by simply changing the illumination conditions (or the lattice periodicity). This scheme promotes efficient coupling of light to the 2D TMD layers via resonant interaction between the MoS2 excitons and the photonic lattice, with subsequent enhancement of absorption exceeding 400% relative to the flat layer. In parallel, an ultra-broadband absorption amplification in the whole visible spectrum is achieved, thanks to the non-resonant excitation of substrate guided modes promoted by MoS2 nanoarrays. These results highlight the potential of nanoscale re-shaped 2D TMD layers for large-area photon harvesting in layered nanophotonics, quantum technologies and new-generation photovoltaics.

SELECTION OF CITATIONS
SEARCH DETAIL
...