Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(26): 34326-34337, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38885609

ABSTRACT

We demonstrate a simple droplet diagnostic approach to monitor the UiO-66 MOF (metal-organic framework) synthesis and its quality using the sessile droplet drying phenomenon. Drying a sessile droplet involves evaporation-driven hydrodynamic flow and particle-nature-dependent self-assembled deposition. In general, the MOF synthesis process involves different sizes and physicochemical nature of particles in every synthesis stage. Equivalent quantities of each of purified pore-activated UiO-66 MOF, yet-to-be-purified pore-inactivated UiO-66 MOF, and reaction precursors of UiO-66 MOF give different deposition patterns when a well-dispersed aqueous droplet of these materials undergoes drying over substrates of varying stiffness and wettability. Yet-to-be-purified, pore-inactivated UiO-66 MOF nanoparticles undergo transport toward the droplet periphery, leading to a thick ring-like deposition at the dried droplet edge. Under appropriate drying conditions, such a deposit leads to desiccation-type mud-like reticular cracking. We study the origin of such ring-like deposits and cracks to understand how the surface charge density of UiO-66 particles controls their stability. We demonstrate that ZrOCl2 salt trapped in a nonpurified pore-inactivated UiO-66 MOF moiety is the principal reason for ring-like deposit formation and subsequent cracking in its dried aqueous droplet edge. Qualitatively, we identified Lewis acid salts that are capable of acting as BroÌ·nsted acid upon hydrolysis (like FeCl3, SnCl2, and ZrOCl2), influence surface charge density and colloidal stability of dispersed UiO-66 MOF particles. As a result, immediate particle coagulation is avoided, so those travel to the droplet edge, forming ring-like deposition and subsequent cracking upon drying. Further, we show that crack patterns on such deposits are highly dependent on the stiffness and temperature of depositing substrates via a competition between axial and lateral strains at the deposit-substrate interface.

2.
RSC Adv ; 14(3): 1924-1938, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38192318

ABSTRACT

The remarkable performance of copper indium gallium selenide (CIGS)-based double heterojunction (DH) photovoltaic cells is presented in this work. To increase all photovoltaic performance parameters, in this investigation, a novel solar cell structure (FTO/SnS2/CIGS/Sb2S3/Ni) is explored by utilizing the SCAPS-1D simulation software. Thicknesses of the buffer, absorber and back surface field (BSF) layers, acceptor density, defect density, capacitance-voltage (C-V), interface defect density, rates of generation and recombination, operating temperature, current density, and quantum efficiency have been investigated for the proposed solar devices with and without BSF. The presence of the BSF layer significantly influences the device's performance parameters including short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), and power conversion efficiency (PCE). After optimization, the simulation results of a conventional CIGS cell (FTO/SnS2/CIGS/Ni) have shown a PCE of 22.14% with Voc of 0.91 V, Jsc of 28.21 mA cm-2, and FF of 86.31. Conversely, the PCE is improved to 31.15% with Voc of 1.08 V, Jsc of 33.75 mA cm-2, and FF of 88.50 by introducing the Sb2S3 BSF in the structure of FTO/SnS2/CIGS/Sb2S3/Ni. These findings of the proposed CIGS-based double heterojunction (DH) solar cells offer an innovative method for realization of high-efficiency solar cells that are more promising than the previously reported traditional designs.

3.
Heliyon ; 10(1): e24107, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38226290

ABSTRACT

Perovskite photovoltaics have an immense contribution toward the all-round development of the solar cell. Apart from the flexibility, stability, and high efficiency, more stress has been given to using lead-free as well as eco-friendly, inexpensive materials in the fabrication of PSC devices. The utilization of non-volatile material, such as cesium tin iodide (CsSnI3), can be proposed for designing the PSC device, which not only makes it eco-friendly but also offers better optoelectronic characteristics due to its smaller bandgap of 1.27 eV. The inclusion of Sn in the perovskite material also functions as an increment in the stability of the perovskite. In the present simulation, CsSnI3 is used as an active absorber layer while the ZnMgO is used as an ETL for a cost-effective nature. Similarly, graphene oxide (GO) is used as HTL for a superior collection of holes. The comprehensive numerical modeling of the ZnMgO can be utilized in solar cell designing with appropriate CsSnI3 thickness, working temperature, total defectivity, and resistance impact, respectively. The presently simulated device offers an excellent efficiency of 17.37 % with CsSnI3-based PSC. These results of the study also show an effective route to develop highly efficient lead-free PSC devices.

4.
J Chem Phys ; 160(1)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38180259

ABSTRACT

In polymers, the equilibrium state is achieved when the chains have access to the maximum number of conformational states, which allows them to explore a larger conformational space, leading to an increase in the entropy of the system. Preparation of thin polymer films using the spin-coating technique results in polymer chains being locked in a nonequilibrium state with lower entropy due to possible stretching of chains during the process. Allowing enough time for recovery results in the relaxation of the spin-coating-induced molecular recoiling stress. Annealing such a film generates entropy due to its inherent irreversibility. We employed the dewetting technique to determine the molecular recoiling stress relaxation time in poly-(tertbutyl styrene) thin films. Furthermore, we qualitatively differentiated the metastable states achieved by the polymer film using entropy generation in a relaxing polymer film as an effect of thermal entropy and associated it with the conformational entropy of polymer chains utilizing the molecular recoiling stress relaxation time. This enabled us to explain molecular recoiling stress relaxation using a rather simplistic approach involving segmental level molecular rearrangements in polymer chains by attaining transient metastable states through an entropically activated process driving toward equilibrium.

5.
Heliyon ; 9(12): e22866, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38125486

ABSTRACT

Conventional Copper Indium Gallium Di Selenide (CIGS)-based solar cells are more efficient than second-generation technology based on hydrogenated amorphous silicon (a-Si: H) or cadmium telluride (CdTe). So, herein the photovoltaic (PV) performance of CIGS-based solar cells has been investigated numerically using SCAPS-1D solar simulator with different buffer layer and less expensive tin sulfide (Sn2S3) back-surface field (BSF). At first, three buffer layer such as cadmium sulfide (CdS), zinc selenide (ZnSe) and indium-doped zinc sulfide ZnS:In have been simulated with CIGS absorber without BSF due to optimized and non-toxic buffer. Then the optimized structure of Al/FTO/ZnS:In/CIGS/Ni is modified to become Al/FTO/ZnS:In/CIGS/Sn2S3/Ni by adding a Sn2S3 BSF to enhanced efficiency. The detailed analysis have been investigated is the influence of physical properties of each absorber and buffer on photovoltaic parameters including layer thickness, carrier doping concentration, bulk defect density, interface defect density. This study emphasizes investigating the reasons for the actual devices' poor performance and illustrates how each device's might vary open-circuit voltage (VOC), short-circuit current density (JSC), fill factor (FF), power conversion efficiency (PCE), and quantum efficiency (QE). The optimized structure offers outstanding power conversion efficiency (PCE) of 21.83 % with only 0.80 µm thick CIGS absorber. The proposed CIGS-based solar cell performs better than the previously reported conventional designs while also reducing CIGS thickness and cost.

6.
Heliyon ; 9(11): e21675, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027926

ABSTRACT

Lead-free halide perovskites are a crucial family of materials in the fabrication of solar cells. At present, Solar cells are facing several challenges such as mechanical and thermodynamic instability, toxicity, unsuitable optical parameters, bandgap, and absorption coefficient. Ba3AsI3 is a halide perovskite which has demonstrated good efficiency and tremendous promise for usage in solar cell applications, and it offers a possible solution to these issues. In this study, the properties of the Ba3AsI3 perovskite solar cell were investigated using first-principles density functional theory (FP-DFT) calculations with the CASTEP (Cambridge serial total energy package) formulation. Most of its physical qualities, including its elasticity, electrical composition, bonding, optoelectronic characteristics, and optical characteristics have not yet been explored. In this work, these unexplored properties have been thoroughly investigated using density functional theory-based computations. The Born-Huang criterion and phonon dispersion characteristics have revealed that the material is mechanically stable. The bonding nature has been investigated using the density of states curves, Mulliken population analysis, and electronic charge density. Additionally, different elastic parameters demonstrate that Ba3AsI3 has reasonably high machinability and is mechanically isotropic. ELATE's three-dimensional visualization and optical properties also show isotropic behavior in all directions. The band structure shows that the bandgap is direct. Based on its direct bandgap, stability, large range of absorption coefficient, and suitable optical parameters, Ba3AsI3 is recommended as an absorber layer for solar cell fabrication in a near future.

7.
Soft Matter ; 19(42): 8193-8202, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37853806

ABSTRACT

Poly-(n-butyl methacrylate) (PnBMA) is an important polymer in biomedical applications. Here we study the stability of PnBMA thin films prepared on top of slippery silicon substrates and exposed to nonsolvent aqueous incubation media like water and phosphate-buffered saline (PBS) at temperatures relevant to biological applications (37 °C, 25 °C and 4 °C). Dewetting hole growth experiments allowed us to probe the instability in PnBMA films upon incubation followed by thermal annealing. From the early stage of dewetting hole growth dynamics, we inferred that the stability of the thin PnBMA films decreases as a function of the duration and temperature of incubation, even though the films were found not to readily dewet at room temperature after incubation. It is also observed that water incubation makes films more unstable than incubation in PBS. We explained our observations as a combined effect of (i) an increase in surface energy of the PnBMA film due to incubation, (ii) an increased destabilizing effect due to the dominant polar interactions between the incubation medium and the PnBMA film and (iii) the plasticization effect of PnBMA films by the incubation media. Plasticization resulted in a decrease in the modulus of PnBMA thin films as a function of incubation time. The viscosity of PnBMA films upon incubation was found to be coupled to the decreasing modulus. Thus we infer that incubation in common aqueous nonsolvents can detrimentally affect the stability of polymers limiting their specific usages through a complex interplay of multiple molecular level phenomena.

8.
Dalton Trans ; 52(34): 11886-11896, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37561075

ABSTRACT

Designing metal-organic framework (MOF)-based solid nanoparticles to stabilize Pickering emulsions by fine-tuning their hydrophobicity and lipophobicity is vital for essential applications and fundamental understanding. We demonstrate in situ grafting of palmitic acid in UiO-66 MOF through its linker defects. Our designed and activated nanoparticles (denoted as UP') stabilized the Pickering emulsions of n-heptane-in-water. Furthermore, we showed how UP' stabilized emulsion droplets disperse in media by covering each tiny droplet with a nanoscale layer made of UP'. To support our claim, we carried out the freeze-drying process to remove the liquid part from the emulsion, leaving behind the solid shell-like microstructures that we further characterized through several microscopic techniques. The stable n-heptane-in-water emulsion was confirmed by dilution (drop test), conductivity, zeta potential, and theoretical surface electrostatic potential measurements. Rheological studies indicate that the Pickering emulsions of n-heptane-in-water stabilized by UP' are much more resistant to deformation and flow imparting higher (mechanical) stability and shelf-life. Pickering emulsions stabilized by UP' emerged as a versatile way to design smart functional materials of UiO-66 through engineering linker defects that may have potential applications in interfacial catalysis, dye or contaminant separation, etc.

9.
ACS Polym Au ; 2(5): 333-340, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36267547

ABSTRACT

We utilized fast scanning calorimetry to characterize the glass transition temperature (T g) and intrinsic molecular mobility of low-molecular-weight poly(n-butyl methacrylate) thin films of varying thicknesses. We found that the T g and intrinsic molecular mobility were coupled, showing no film thickness-dependent variation. We further employed a unique noncontact capillary nanoshearing technique to directly probe layer-resolved gradients in the rheological response of these films. We found that layer-resolved shear mobility was enhanced with a reduction in film thickness, whereas the effective viscosity decreased. Our results highlight the importance of polymer-substrate attractive interactions and free surface-promoted enhanced mobility, establishing a competitive nanoconfinement effect in poly(n-butyl methacrylate) thin films. Moreover, the findings indicate a decoupling in the thickness-dependent variation of T g and intrinsic molecular mobility with the mechanical responses (shear mobility and effective viscosity).

10.
Soft Matter ; 18(22): 4253-4264, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35608257

ABSTRACT

Drying-induced mechanical instabilities in aqueous solution droplets occur primarily because, during evaporation, the central liquid minimizes the surface tension by pulling the packed gel-like region, leading to a stretching effect of the liquid region at the receding wet front. Under an appropriate scenario, it finally perturbs the gel-like zone at the droplet periphery, generating cracks, wrinkles, folds, cavities, buckles, etc. Here we report unique wrinkling patterns from evaporating sessile micellar aqueous droplets on rigid and soft substrates kept at temperatures well above the ambient. The wrinkling patterns remarkably vary depending on the material's elastic modulus and substrate, the concentration of the micellar solution (CCTAB), and the substrate temperature (TS). In the low concentration regime (CCTAB ≤ 0.0364 wt%), coffee-ring-like morphologies are observed devoid of any wrinkling morphology irrespective of TS and the substrate's elastic modulus. In the high initial concentration regime (CCTAB ≥ 0.0364 wt%), for droplets deposited at TS ≥ 85 °C, wrinkle formation starts at the droplet peripheral zone, radial on the stiff glass substrate, and annular on the soft cross-linked PDMS substrate. At CCTAB ≥ 2.73 wt%, radial wrinkles on the glass substrate and annular wrinkles on the cross-linked PDMS substrate nucleate from the edges connecting to the central region of the deposit. The ratio between the width of the gel-like deposit (or wrinkle length) and the droplet's radius scales with the initial concentration of the surfactant and depends on the initial equilibrium contact angle of the micellar droplets. Our results support existing understandings of mechanical instabilities of dried deposits, which satisfies interdependent scaling relationships among their number, lengthscale (dried deposit radius, the wavelength of the wrinkles, and peripheral undulations from Rayleigh-Bénard instability), thickness, and elastic modulus. Interestingly, we found substrate-dependent antagonistic interdependence of the elastic modulus of the dried deposit with the initial surfactant concentration.

11.
Soft Matter ; 18(1): 62-79, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34878487

ABSTRACT

We report morphological regulation of NaCl (sodium chloride) crystals through the evaporative crystallisation process of microdroplets containing a cationic surfactant CTAB (cetyltrimethylammonium bromide). Various fascinating evaporative salt morphologies are observed using different combinations of salt (CNaCl) and surfactant (CCTAB) concentrations. Each observed morphology is carefully explained by the interplaying physical phenomena, such as crystallisation, micellisation, evaporative dewetting, and surface adsorption of anionic couneterions. Salt morphologies are investigated for low (CNaCl = 0.1 (M)), intermediate (CNaCl = 0.5 (M)) and high (CNaCl = 2 (M)) concentrations, whereas surfactant concentrations are varied four orders of magnitudes (from 0.0001 (M) to 0.1 (M)). Interestingly, we observe a threshold in CCTAB at 0.001 (M), beyond which the peripheral rings of dried deposits are found to be composed of CTAB for CNaCl = 0.1 (M), while the same is seen to be made up of NaCl for CNaCl = 2 (M). We have explained the morphological evolution by the process of competitive surface adsorption phenomenon between Cl- and Br- counter ions. Such a detailed study of saline droplet crystallisation in the presence of a cationic surfactant underpins the fundamental understanding of the crystallisation process. In addition, it may further impact application sectors where crystallisation of saline solution plays an important role, especially in the presence of additives.

12.
ACS Macro Lett ; 8(9): 1115-1121, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-35619457

ABSTRACT

Processing polymer thin films by physical vapor deposition has been a major challenge due to material degradation. This challenge has limited our understanding of morphological control by top-down approaches that can be crucial for many applications. Recently, matrix-assisted pulsed laser evaporation (MAPLE) has emerged as an alternative route to fabricate polymer thin films from near-gas phase growth conditions. In this Letter, we investigate how this approach can result in a stable two-phase film structure of semicrystalline polymers via a unique combination of MAPLE and flash calorimetry. In the case of MAPLE-deposited poly(ethylene oxide) (PEO) thin films, we find a 35 °C enhancement in the glass transition temperature relative to melt-crystallized films, which is associated with irreversible chain adsorption in the amorphous region of the film. Remarkably, by varying substrate temperature during deposition, we reveal the ability to significantly tune the crystal orientation, extent of crystallinity, and lamellar thickness of MAPLE-deposited PEO thin films.

13.
Phys Chem Chem Phys ; 19(43): 29263-29270, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29067372

ABSTRACT

Using X-ray reflectivity, spectroscopic ellipsometry and Raman spectroscopy, we have studied the stratified structure and the two glass-like thermal transitions in sufficiently aged glassy polystyrene films. We find that favorable interaction between the solid substrate and the polymer film induces stratification within the film resulting in different densities across the film thickness. Existence of two glass-like thermal transitions (one at 70 °C and the other at 95 °C) is independently confirmed by temperature dependent spectroscopic ellipsometry and Raman spectroscopy measurements. Interestingly, the thermal coefficient of expansion of the polymer film displays anomalous behavior with temperature and is found to have the lowest value over the temperature range 70-95 °C, i.e. between the two observed glass-like thermal transition temperatures.

14.
Phys Chem Chem Phys ; 19(19): 12441-12451, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28470282

ABSTRACT

The influence of various processing conditions on the singlet exciton diffusion is explored in films of a conjugated random copolymer poly-(3-hexylthiophene-co-3-dodecylthiophene) (P3HT-co-P3DDT) and correlated with the degree of crystallinity probed by grazing incidence X-ray scattering and with exciton bandwidth determined from absorption spectra. The exciton diffusion coefficient is deduced from exciton-exciton annihilation measurements and is found to increase by more than a factor of three when thin films are annealed using CS2 solvent vapour. A doubling of exciton diffusion coefficient is observed upon melt annealing at 200 °C and the corresponding films show about 50% enhancement in the degree of crystallinity. In contrast, films fabricated from polymer solutions containing a small amount of either solvent additive or nucleating agent show a decrease in exciton diffusion coefficient possibly due to formation of traps for excitons. Our results suggest that the enhancement of exciton diffusivity occurs because of increased crystallinity of alkyl-stacking and longer conjugation of aggregated chains which reduces the exciton bandwidth.

15.
Proc Natl Acad Sci U S A ; 114(19): 4854-4856, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28450406

Subject(s)
Glass , Surface Properties
16.
J Phys Chem Lett ; 8(6): 1229-1234, 2017 Mar 16.
Article in English | MEDLINE | ID: mdl-28256842

ABSTRACT

When geometrically confined to the nanometer length scale, a condition in which a large portion of the material is in the nanoscale vicinity of interfaces, polymers can show astonishing changes in physical properties. In this investigation, we employ a unique noncontact capillary nanoshearing method to directly probe nanoresolved gradients in the rheological response of ultrathin polymer films as a function of temperature and stress. Results show that ultrathin polymer films, in response to an applied shear stress, exhibit a gradient in molecular mobility and viscosity that originates at the interfaces. We demonstrate, via molecular dynamics simulations, that these gradients in molecular mobility reflect gradients in the average segmental relaxation time and the glass-transition temperature.

17.
ACS Appl Mater Interfaces ; 9(17): 14945-14952, 2017 May 03.
Article in English | MEDLINE | ID: mdl-28358189

ABSTRACT

Singlet exciton diffusion was studied in the efficient organic photovoltaic electron donor material DTS(FBTTh2)2. Three complementary time-resolved fluorescence measurements were performed: quenching in planar heterojunctions with an electron acceptor, exciton-exciton annihilation, and fluorescence depolarization. The average exciton diffusivity increases upon annealing from 1.6 × 10-3 to 3.6 × 10-3 cm2 s-1, resulting in an enhancement of the mean two-dimensional exciton diffusion length (LD = (4Dτ)1/2) from 15 to 27 nm. About 30% of the excitons get trapped very quickly in as-cast films. The high exciton diffusion coefficient of the material leads to it being able to harvest excitons efficiently from large donor domains in bulk heterojunctions.

18.
ACS Appl Mater Interfaces ; 8(14): 9247-53, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-26990151

ABSTRACT

Phthalocyanines and their main group and metal complexes are important classes of organic semiconductor materials but are usually highly insoluble and so frequently need to be processed by vacuum deposition in devices. We report two highly soluble silicon phthalocyanine (SiPc) diester compounds and demonstrate their potential as organic semiconductor materials. Near-infrared (λ(EL) = 698-709 nm) solution-processed organic light-emitting diodes (OLEDs) were fabricated and exhibited external quantum efficiencies (EQEs) of up to 1.4%. Binary bulk heterojunction solar cells employing P3HT or PTB7 as the donor and the SiPc as the acceptor provided power conversion efficiencies (PCE) of up to 2.7% under simulated solar illumination. Our results show that soluble SiPcs are promising materials for organic electronics.

19.
Phys Rev Lett ; 109(13): 136102, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-23030107

ABSTRACT

We have investigated the consequences of physical aging in thin spin-coated glassy polystyrene films through detailed dewetting studies. A simultaneous and equally fast exponential decay of dewetting velocity, width, and height of the rim with aging time was observed, which is related to a reduction of residual stresses within such films. The temperature dependence of these decay times followed an Arrhenius behavior, yielding an activation energy of 70±6 kJ/mol, on the same order of magnitude as values for the ß-relaxation of polystyrene and for relaxations of surface topographical features. Our results suggest that rearrangements at the level of chain segments are sufficient to partially relax frozen-in out-of-equilibrium local chain conformations, i.e., the cause of residual stresses, and they might also be responsible for macroscopic relaxations at polymer surfaces.

20.
Phys Rev Lett ; 105(22): 227801, 2010 Nov 26.
Article in English | MEDLINE | ID: mdl-21231423

ABSTRACT

We have examined the aging behavior of spin-cast thin polymer films as a function of their processing history. Films prepared from solutions close to the Θ temperature were aged for varying times at room temperature, followed by a dewetting experiment above the glass transition temperature of the polymer. The characteristic aging time varied strongly with the quality of the solvent, which is attributed to distorted chain conformations in the as-cast films. This is an indication for the nonequilibrium nature of thin polymer films, possibly causing some of their unexplained properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...