Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Can J Neurol Sci ; 49(5): 662-671, 2022 09.
Article in English | MEDLINE | ID: mdl-34321129

ABSTRACT

BACKGROUND: To investigate the relative contributions of cerebral cortex and basal ganglia to movement stopping, we tested the optimum combination Stop Signal Reaction Time (ocSSRT) and median visual reaction time (RT) in patients with Alzheimer's disease (AD) and Parkinson's disease (PD) and compared values with data from healthy controls. METHODS: Thirty-five PD patients, 22 AD patients, and 29 healthy controls were recruited to this study. RT and ocSSRT were measured using a hand-held battery-operated electronic box through a stop signal paradigm. RESULT: The mean ocSSRT was found to be 309 ms, 368 ms, and 265 ms in AD, PD, and healthy controls, respectively, and significantly prolonged in PD compared to healthy controls (p = 0.001). The ocSSRT but not RT could separate AD from PD patients (p = 0.022). CONCLUSION: Our data suggest that subcortical networks encompassing dopaminergic pathways in the basal ganglia play a more important role than cortical networks in movement-stopping. Combining ocSSRT with other putative indices or biomarkers of AD (and other dementias) could increase the accuracy of early diagnosis.


Subject(s)
Alzheimer Disease , Parkinson Disease , Alzheimer Disease/diagnosis , Basal Ganglia , Dopamine , Humans , Parkinson Disease/diagnosis , Reaction Time
3.
PLoS One ; 16(1): e0240385, 2021.
Article in English | MEDLINE | ID: mdl-33439890

ABSTRACT

BACKGROUND: With the proposed pathophysiologic mechanism of neurologic injury by SARS CoV-2, the frequency of stroke and henceforth the related hospital admissions were expected to rise. This paper investigated this presumption by comparing the frequency of admissions of stroke cases in Bangladesh before and during the pandemic. METHODS: This is a retrospective analysis of stroke admissions in a 100-bed stroke unit at the National Institute of Neurosciences and Hospital (NINS&H) which is considerably a large stroke unit. All the admitted cases from 1 January to 30 June 2020 were considered. Poisson regression models were used to determine whether statistically significant changes in admission rates can be found before and after 25 March since when there is a surge in COVID-19 infections. RESULTS: A total of 1394 stroke patients took admission in the stroke unit during the study period. Half of the patients were older than 60 years, whereas only 2.6% were 30 years old or younger. The male to female ratio is 1.06:1. From January to March 2020, the mean rate of admission was 302.3 cases per month, which dropped to 162.3 cases per month from April to June, with an overall reduction of 46.3% in acute stroke admission per month. In those two periods, reductions in average admission per month for ischemic stroke (IST), intracerebral hemorrhage (ICH), subarachnoid hemorrhage (SAH) and venous stroke (VS) were 45.5%, 37.2%, 71.4% and 39.0%, respectively. Based on weekly data, results of Poisson regressions confirm that the average number of admissions per week dropped significantly during the last three months of the sample period. Further, in the first three months, a total of 22 cases of hyperacute stroke management were done, whereas, in the last three months, there was an 86.4% reduction in the number of hyperacute stroke patients getting reperfusion treatment. Only 38 patients (2.7%) were later found to be RT-PCR SARS Cov-2 positive based on nasal swab testing. CONCLUSION: This study revealed a more than fifty percent reduction in acute stroke admission during the COVID-19 pandemic. Whether the reduction is related to the fear of getting infected by COVID-19 from hospitalization or the overall restriction on public movement or stay-home measures remains unknown.


Subject(s)
COVID-19/epidemiology , Hospitals/statistics & numerical data , Patient Admission/statistics & numerical data , Stroke/therapy , Adult , Bangladesh/epidemiology , Female , Humans , Male , Middle Aged , Pandemics , Retrospective Studies
4.
Front Hum Neurosci ; 14: 567177, 2020.
Article in English | MEDLINE | ID: mdl-33132880

ABSTRACT

Introduction: The ability to stop the execution of a movement in response to an external cue requires intact executive function. The effect of psychotropic drugs on movement inhibition is largely unknown. Movement stopping can be estimated by the Stop Signal Reaction Time (SSRT). In a recent publication, we validated an improved measure of SSRT (optimum combination SSRT, ocSSRT). Here we explored how diazepam, which enhances transmission at GABAA receptors, affects ocSSRT. Methods: Nine healthy individuals were randomized to receive placebo, 5 mg or 10 mg doses of diazepam. Each participant received both the dosage of drug and placebo orally on separate days with adequate washout. The ocSSRT and simple reaction time (RT) were estimated through a stop-signal task delivered via a battery-operated box incorporating green (Go) and red (Stop) light-emitting diodes. The task was performed just before and 1 h after dosing. Result: The mean change in ocSSRT after 10 mg diazepam was significantly higher (+27 ms) than for placebo (-1 ms; p = 0.012). By contrast, the mean change in simple response time remained comparable in all three dosing groups (p = 0.419). Conclusion: Our results confirm that a single therapeutic adult dose of diazepam can alter motor inhibition in drug naïve healthy individuals. The selective effect of diazepam on ocSSRT but not simple RT suggests that GABAergic neurons may play a critical role in movement-stopping.

SELECTION OF CITATIONS
SEARCH DETAIL
...