Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Virusdisease ; 32(1): 98-107, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33842673

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a member of the family Coronaviridae, and the world is currently witnessing a global pandemic outbreak of this viral disease called COVID-19. With no specific treatment regime, this disease is now a serious threat to humanity and claiming several lives daily. In this work, we selected 24 phytochemicals for an in silico docking study as candidate drugs, targeting four essential proteins of SARS-CoV-2 namely Spike glycoprotein (PDB id 5WRG), Nsp9 RNA binding protein (PDB id 6W4B), Main Protease (PDB id 6Y84), and RNA dependent RNA Polymerase (PDB id 6M71). After statistical validation, the results indicated that a total of 11 phytochemicals divided into two clusters might be used as potential drug candidates against SARS-CoV-2. Supplementary Information: The online version contains supplementary material available at 10.1007/s13337-021-00654-x.

2.
Virusdisease ; 31(3): 308-315, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32904842

ABSTRACT

Ebola and Dengue are the critical diseases caused by RNA viruses, especially in the tropical parts of the globe, including Asia and Africa, and no prominent therapeutic options are available so far. Here, an effort was made to evaluate the efficacy of black pepper (Piper nigrum L.) alkaloid Piperine as a potential drug through computational docking simulation. Eight structurally essential proteins of Dengue and Ebola virus were selected as in silico docking targets for Piperine. Absorption, Distribution, Metabolism, and Excretion profile showed that Piperine was safe and possessed significant drug-like properties. Molecular dynamic simulation and binding free energy calculation showed that Piperine could inhibit Methyltransferase (PDB id 1L9K) of Dengue and VP35 Interferon Inhibitory Domain (PDB id 3FKE) of Ebola virus in comparison with the commercial antiviral Ribavirin. Furthermore, statistical analysis based on multivariate and clustering approaches revealed that Piperine had more affinity towards viral proteins than that of Ribavirin.

SELECTION OF CITATIONS
SEARCH DETAIL
...