Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(17): 8256-8272, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38587499

ABSTRACT

High entropy materials (HEMs), epitomized by high entropy alloys (HEAs), have sparked immense interest for a range of clean energy and environmental applications due to their remarkable structural versatility and adjustable characteristics. In the face of environmental challenges, HEMs have emerged as valuable tools for addressing issues ranging from wastewater remediation to energy conversion and storage. This review provides a comprehensive exploration of HEMs, spotlighting their catalytic capabilities in diverse redox reactions, such as carbon dioxide reduction to value-added products, degradation of organic pollutants, oxygen reduction, hydrogen evolution, and ammonia decomposition using electrocatalytic and photocatalytic pathways. Additionally, the review highlights HEMs as novel electrode nanomaterials, with the potential to enhance the performance of batteries and supercapacitors. Their unique features, including high capacitance, electrical conductivity, and thermal stability, make them valuable components for meeting crucial energy demands. Furthermore, the review examines challenges and opportunities in advancing HEMs, emphasizing the importance of understanding the underlying mechanisms governing their catalytic and electrochemical behaviors. Essential considerations for optimizing the HEM performance in catalysis and energy storage are outlined to guide future research. Moreover, to provide a comprehensive understanding of the current research landscape, a meticulous bibliometric analysis is presented, offering insights into the trends, focal points, and emerging directions within the realm of HEMs, particularly in addressing environmental concerns.

2.
Chemosphere ; 351: 141164, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215829

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) (also known as 'forever chemicals') have emerged as trace pollutants of global concern, attributing to their persistent and bio-accumulative nature, pervasive distribution, and adverse public health and environmental impacts. The unregulated discharge of PFAS into aquatic environments represents a prominent threat to the wellbeing of humans and marine biota, thereby exhorting unprecedented action to tackle PFAS contamination. Indeed, several noteworthy technologies intending to remove PFAS from environmental compartments have been intensively evaluated in recent years. Amongst them, adsorption and photocatalysis demonstrate remarkable ability to eliminate PFAS from different water matrices. In particular, carbon-based materials, because of their diverse structures and many exciting properties, offer bountiful opportunities as both adsorbent and photocatalyst, for the efficient abatement of PFAS. This review, therefore, presents a comprehensive summary of the diverse array of carbonaceous materials, including biochar, activated carbon, carbon nanotubes, and graphene, that can serve as ideal candidates in adsorptive and photocatalytic treatment of PFAS contaminated water. Specifically, the efficacy of carbon-mediated PFAS removal via adsorption and photocatalysis is summarised, together with a cognizance of the factors influencing the treatment efficiency. The review further highlights the neoteric development on the novel innovative approach 'concentrate and degrade' that integrates selective adsorption of trace concentrations of PFAS onto photoactive surface sites, with enhanced catalytic activity. This technique is way more energy efficient than conventional energy-intensive photocatalysis. Finally, the review speculates the cardinal challenges associated with the practical utility of carbon-based materials, including their scalability and economic feasibility, for eliminating exceptionally stable PFAS from water matrices.


Subject(s)
Fluorocarbons , Nanotubes, Carbon , Water Pollutants, Chemical , Humans , Adsorption , Bioaccumulation , Water
3.
J Hazard Mater ; 465: 133445, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38198866

ABSTRACT

Stormwater represent a critical pathway for transporting microplastics (MPs) to surface waters. Due to complex dynamics of MPs in stormwater, its dispersion, weathering, risk, and transport are poorly understood. This review bridges those gaps by summarizing the latest findings on sources, abundance, characteristics, and dynamics involved in stormwater MP pollution. Weathering starts before or after MPs enter stormwater and is more pronounced on land due to continuous heat and mechanical stress. Land use patterns, rainfall intensity, MPs size and density, and drainage characteristics influence the transport of MPs in stormwater. Tire and road wear particles (TRWPs), littering, and road dust are major sources of MPs in stormwater. The concentrations of MPs varies from 0.38-197,000 particles/L globally. Further MP concentrations showed regional variations, highlighting the importance of local monitoring efforts needed to understand local pollution sources. We observed unique signatures associated with the shape and color of MPs. Fibers and fragments were widely reported, with transparent and black being the predominant colors. We conclude that the contribution of stormwater to MP pollution in surface waters is significantly greater than wastewater treatment plant effluents and demands immediate attention. Field and lab scale studies are needed to understand its behavior in stormwater and the risk posed to the downstream water bodies.

4.
Environ Sci Pollut Res Int ; 31(8): 11349-11370, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38180651

ABSTRACT

The uncontrolled discharge of industry- and consumer-derived micropollutants and synthetic contaminants into freshwater bodies represents a severe threat to human health and aquatic ecosystem. Inexpensive and highly efficient wastewater treatment methods are, therefore, urgently required to eliminate such non-biodegradable, recalcitrant, and toxic organic pollutants. In this context, advanced oxidation processes, particularly heterogenous photocatalysis, have received enormous attention over the past few decades. Among the different classes of photocatalysts explored by the scientific community, heterojunction photocatalysts, in general, and binary heterojunction photocatalysts, in particular, have shown tremendous promise, attributed to their many distinct advantages. As such, the present review highlights the application of diverse array of binary heterojunction photocatalysts for eliminating water-borne contaminants. Specifically, a bibliometric analysis has been conducted to identify the ongoing research trend and future prospects of heterojunction photocatalysts. It appears that metal oxide/metal oxide-based heterojunctions have superior thermal and mechanical stability compared to other heterojunction photocatalysts. In contrast, metal oxide/non-metal semiconductor-based heterojunctions are extremely effective in pollutant degradation without significant leaching of metal ions. The review concludes by proposing novel strategic research guidelines in order to make further advances in this rapidly evolving cross-disciplinary field of topical interest.


Subject(s)
Body Fluids , Environmental Pollutants , Humans , Ecosystem , Bibliometrics , Oxides
5.
Langmuir ; 39(51): 18846-18865, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38095629

ABSTRACT

Retrieving the spent photocatalysts from the reaction system is always a challenging task. Therefore, the present work is focused on immobilizing sulfur-doped-Bi2O3/MnO2 (S-BOMO) heterojunction photocatalysts over different support matrices and evaluating their performance for the removal of sulfamethoxazole (SMX) in water under visible light. Our findings revealed S-BOMO coated clay beads (S-BOMO CCB) achieving more than 86% (240 min) SMX degradation ∼3, ∼1.3, and ∼2 times higher compared to S-BOMO coated on the different substrates, including glass beads, floating stones, and polymer material substrates, respectively. Mott-Schottky measurements confirmed the construction of the Z-scheme heterojunction involving MnO2 and 2S-Bi2O3. This Z-scheme mechanism, along with its narrow band gap of 1.58 eV, resulted in a rapid spatial transfer of the photogenerated charge carriers between the semiconductors and is believed to enhance the overall photocatalytic activity of the nanocomposite. Radical trapping and electron paramagnetic resonance results clearly established the active role of hydroxyl radicals and hydrogen peroxide in the degradation of SMX. Further, the 2S-BOMO CCB demonstrated excellent stability and photocatalytic activity over multiple runs. According to the sensitivity analysis and the results of anion effect experiments, phosphate and sulfate ions exhibit a significant impact on sulfamethoxazole degradation. Toxicity analysis revealed that 2S-BOMO CCB and sulfamethoxazole degradation byproducts were apparently innocuous. Additionally, the practical applicability of 2S-BOMO CCB was examined in various real water matrices, with the degradation efficiency followed the order: tap water < groundwater < surface water < hospital wastewater < municipal wastewater < pharmaceutical industry wastewater. The economic assessment revealed the reduction in the overall cost of the immobilized 2S-BOMO following the recovery process. Overall, the findings of this work provided critical insights into the synthesis and performance of incredibly effective and stable immobilized photocatalysts for the degradation of pharmaceutical pollutants.

6.
Environ Sci Pollut Res Int ; 30(32): 78537-78553, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37271787

ABSTRACT

It is well-documented that accumulation of pharmaceutically active compounds (PhACs), such as antibiotics, in aquatic ecosystems is a prominent environmental hazard. Herein, a series of 2D materials-based heterojunctions, conceptualized based on the integration of graphitic carbon nitride (g-C3N4) with tungsten disulfide (WS2), was fabricated through a facile one-step calcination process, and systematically evaluated for eliminating tetracycline (TC) and sulfamethoxazole (SMX) from aqueous matrices. The microstructure, optical properties, and surface chemistry of the as-prepared composites were examined with a range of microscopy and spectroscopy techniques. In comparison with pristine g-C3N4 or bare WS2, the g-C3N4/WS2 material, with optimal WS2 loading, showed significantly improved photocatalytic activity, towards degradation of TC (84%) and SMX (96%), under visible light. Free radical scavenging experiments revealed that superoxide anions and hydroxyl radicals were predominantly responsible for the rapid breakdown of the PhACs. In addition, the dissociation intermediates and residues were identified and the plausible photocatalytic degradation pathways of TC and SMX over the as-constructed 2D/2D heterojunction were discussed. Further, the photocatalysis end products were non-toxic, as inferred via the resazurin cell viability assay, employing Escherichia coli as a model organism. Most importantly, the 2D/2D g-C3N4/WS2 architecture was structurally resilient and exhibited a fairly stable cycling performance for persistent usage in wastewater treatment. The outcomes of this study testify that 2D/2D heterojunction of g-C3N4 fragments and WS2 nanosheets holds great promise for destroying antibiotics or their metabolites, usually present in wastewaters.


Subject(s)
Environmental Pollutants , Ecosystem , Catalysis , Anti-Bacterial Agents/chemistry , Tetracycline , Sulfamethoxazole , Light , Pharmaceutical Preparations
7.
J Environ Manage ; 342: 118081, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37182480

ABSTRACT

The incessant accumulation of pharmaceutically active compounds (PhACs) in various environmental compartments represents a global menace. Herein, an equimolar high entropy alloy (HEA), i.e., FeCoNiCuZn, is synthesized via a facile and scalable method, and its effectiveness in eliminating four different PhACs from aqueous matrices is rigorously examined. Attributing to its relatively low bandgap and multielement active sites, the as-synthesized quinary HEA demonstrates more pronounced photocatalytic decomposition efficiency, towards tetracycline (86%), sulfamethoxazole (94%), ibuprofen (80%), and diclofenac (99%), than conventional semiconductor-based photocatalysts, under visible light irradiation. Additionally, radical trapping assays are conducted, and the dissociation intermediates are identified, to probe the plausible photocatalytic degradation pathways. Further, the end-products of FeCoNiCuZn-mediated photocatalysis are apparently non-toxic, and the HEA can be successfully recycled repeatedly, with no obvious leaching of heavy metal ions. Overall, the findings of this study testify the applicability of FeCoNiCuZn as a visible light-active photocatalyst, for treating wastewaters contaminated with PhACs.


Subject(s)
Alloys , Tetracycline , Entropy , Anti-Bacterial Agents , Light , Catalysis
8.
J Environ Manage ; 332: 117323, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36716542

ABSTRACT

Microbial electrosynthesis (MES) is a neoteric technology that facilitates biocatalysed synthesis of organic compounds with the aid of homoacetogenic bacteria, while feeding CO2 as an inorganic carbon source. Operating MES with surplus renewable electricity further enhances the sustainability of this innovative bioelectrochemical system (BES). However, several lacunae exist in the domain knowledge, stunting the widespread application of MES. Despite significant progress in this area over the past decade, the product yield efficiency is not on par with other contemporary technologies. This bottleneck can be overcome by adopting a holistic approach, i.e., applying innovative and integrated solutions to ensure a robust MES operation. Further, the widespread deployment of MES exclusively relies on its ability to mature a sessile biofilm over a biocompatible electrode, while offering minimal charge transfer resistance. Additionally, operating MES preferably at H2-generating reduction potential and valorising industrial off-gas as carbon substrate is crucial to accomplish economic sustainability. In light of the aforementioned, this review collates the latest progress in the design and development of MES-centred systems for valorisation of CO2 into value-added products. Specifically, it highlights the significance of inoculum pre-treatment for promoting biocatalytic activity and biofilm growth on the cathodic surface. In addition, it summarizes the diverse materials that are commonly used as electrodes in MES, with an emphasis on the importance of inexpensive, robust, and biocompatible electrode materials for the practical application of MES technology. Further, the review presents insights into media conditions, operational factors, and reactor configurations that affect the overall performance of MES process. Finally, the product range of MES, downstream processing requirements, and integration of MES with other environmental remediation technologies are also discussed.


Subject(s)
Carbon Dioxide , Electricity , Carbon Dioxide/chemistry , Carbon , Bioreactors , Organic Chemicals , Electrodes
9.
Environ Sci Pollut Res Int ; 30(10): 24793-24803, 2023 Feb.
Article in English | MEDLINE | ID: mdl-34705209

ABSTRACT

Trihalomethanes (THMs) are common disinfection by-products in chlorinated tap waters. They can cause various cancers and non-cancer health hazards. Ingestion, dermal contact, and inhalation are the three exposure routes considered in the THM hazard or risk assessments. Among these, inhalation hazard is generally calculated by assuming the initial concentration as zero. This assumption fails to address the case of continuous or successive showers that can happen in shared showering facilities such as student hostels or gymnasiums. In the present study, the leftover THM concentration from the previous bath was considered to assess the chronic daily intakes (CDI) and hazard index (HI) for successive showers. For this, tap water of a university campus was analyzed to understand the extent of THM exposure at consumer points and the result obtained was used for the hazard assessment. Total THM concentrations varied from 0.51 to 68.9 µg L-1. To address the variability of the model input parameters, 50,000 iterations of Monte Carlo simulation were carried out. Maximum HI values of 7.94E - 02 ± 3.63E - 02, and 6.69E - 02 ± 3.08E-02 were observed for the 1st shower for females and males, respectively. This value increased exponentially up to the 5th shower and thereafter, the value was constant. The methodology followed in the present study successfully determines the risk and hazard of THMs through successive showers.


Subject(s)
Neoplasms , Water Pollutants, Chemical , Male , Female , Humans , Trihalomethanes/analysis , Environmental Exposure/analysis , Water Pollutants, Chemical/analysis , Water Supply , Household Products , Water , Risk Assessment
10.
Waste Dispos Sustain Energy ; 5(1): 37-62, 2023.
Article in English | MEDLINE | ID: mdl-36568572

ABSTRACT

Pharmaceutical is one of the noteworthy classes of emerging contaminants. These biologically active compounds pose a range of deleterious impacts on human health and the environment. This is attributed to their refractory behavior, poor biodegradability, and pseudopersistent nature. Their large-scale production by pharmaceutical industries and subsequent widespread utilization in hospitals, community health centers, and veterinary facilities, among others, have significantly increased the occurrence of pharmaceutical residues in various environmental compartments. Several technologies are currently being evaluated to eliminate pharmaceutical compounds (PCs) from aqueous environments. Among them, adsorption appears as the most viable treatment option because of its operational simplicity and low cost. Intensive research and development efforts are, therefore, currently underway to develop inexpensive adsorbents for the effective abatement of PCs. Although numerous adsorbents have been investigated for the removal of PCs in recent years, biochar-based adsorbents have garnered tremendous scientific attention to eliminate PCs from aqueous matrices because of their decent specific surface area, tunable surface chemistry, scalable production, and environmentally benign nature. This review, therefore, attempts to provide an overview of the latest progress in the application of biochar for the removal of PCs from wastewater. Additionally, the fundamental knowledge gaps in the domain knowledge are identified and novel strategic research guidelines are laid out to make further advances in this promising approach towards sustainable development.

11.
Waste Manag Res ; 40(10): 1514-1526, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35257599

ABSTRACT

This study aims to use landfill leachate (LL) as an aqueous medium during hydrothermal carbonisation (HTC) of food waste to produce hydrochar (FWH-LL-C), which could be used as an electrode material in energy storage devices. The structural properties and electrochemical performance of the hydrochar were compared to that obtained using distilled water as a reaction medium (FWH-DW-C). The results showed that there is a difference in Brunauer-Emmett-Teller (BET) surface area of FWH-LL-C (220 m2 gm-1) and FWH-DW-C (319 m2 gm-1). The electrochemical properties were comparable, with FWH-LL-C having 227 F g-1 specific capacitance at 1 A g-1 current density and FWH-DW-C having 235 F g-1 specific capacitance at 1 A g-1 current density. Furthermore, at a power density of 634 W kg-1, FWH-DW-C achieved the highest energy density of 14.4 Wh kg-1. The energy retention capacity of the electrode was 98% which indicate that the material has an excellent energy storage capacity. The findings suggested that LL could be used as an alternative source of aqueous media during the HTC of food waste to produce hydrochar which could be used as an effective electrode material in supercapacitors.


Subject(s)
Refuse Disposal , Water Pollutants, Chemical , Carbon/chemistry , Electrodes , Food , Temperature , Water
12.
Environ Sci Pollut Res Int ; 29(57): 85742-85760, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35091954

ABSTRACT

Chlorinated disinfectants are widely used in hospitals, COVID-19 quarantine facilities, households, institutes, and public areas to combat the spread of the novel coronavirus as they are effective against viruses on various surfaces. Medical facilities have enhanced their routine disinfection of indoors, premises, and in-house sewage. Besides questioning the efficiency of these compounds in combating coronavirus, the impacts of these excessive disinfection efforts have not been discussed anywhere. The impacts of chlorine-based disinfectants on both environment and human health are reviewed in this paper. Chlorine in molecular and in compound forms is known to pose many health hazards. Hypochlorite addition to soil can increase chlorine/chloride concentration, which can be fatal to plant species if exposed. When chlorine compounds reach the sewer/drainage system and are exposed to aqueous media such as wastewater, many disinfection by-products (DBPs) can be formed depending on the concentrations of natural organic matter, inorganics, and anthropogenic pollutants present. Chlorination of hospital wastewater can also produce toxic drug-derived disinfection by-products. Many DBPs are carcinogenic to humans, and some of them are cytotoxic, genotoxic, and mutagenic. DBPs can be harmful to the flora and fauna of the receiving water body and may have adverse effects on microorganisms and plankton present in these ecosystems.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Water Purification , Humans , Chlorine , Wastewater , Chlorides , Ecosystem , Pandemics , Water Pollutants, Chemical/analysis , Disinfection , Halogenation , Halogens
13.
Front Bioeng Biotechnol ; 9: 724499, 2021.
Article in English | MEDLINE | ID: mdl-34490229

ABSTRACT

Invention of novel nanomaterials guaranteeing enhanced biomedical performance in diagnostics and therapeutics, is a perpetual initiative. In this regard, the upsurge and widespread usage of nanoparticles is a ubiquitous phenomenon, focusing predominantly on the application of submicroscopic (< 100 nm) particles. While this is facilitated attributing to their wide range of benefits, a major challenge is to create and maintain a balance, by alleviating the associated toxicity levels. In this minireview, we collate and discuss particularly recent advancements in therapeutic applications of metal and metal oxide nanoparticles in skin and cosmetic applications. On the one hand, we outline the dermatological intrusions, including applications in wound healing. On the other hand, we keep track of the recent trends in the development of cosmeceuticals via nanoparticle engrossments. The dermato-cosmetic applications of metal and metal oxide nanoparticles encompass diverse aspects, including targeted, controlled drug release, and conferring ultraviolet and antimicrobial protections to the skin. Additionally, we deliberate on the critical aspects in comprehending the advantage of rheological assessments, while characterizing the nanoparticulate systems. As an illustration, we single out psoriasis, to capture and comment on the nanodermatology-based curative standpoints. Finally, we lay a broad outlook and examine the imminent prospects.

14.
Bioresour Technol ; 341: 125850, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34474233

ABSTRACT

The frequent occurrence of surfactants in urban wastewaters represents a multifaceted environmental concern. In this investigation, bio-electro-Fenton-microbial fuel cell (BEF-MFC) was developed for the degradation of sodium dodecyl sulphate (SDS) from wastewater. The synthesised cathode catalyst (powdered activated carbon and iron oxide) facilitated the Fenton reaction in the cathodic chamber of the MFC, concurrently generating a maximum power density of 105.67 mW m-2. The overall performance of the BEF-MFC for SDS removal and power generation excelled the control MFC (C-MFC) having carbon black coated cathode under similar operating conditions. Although, the rate of SDS degradation was favourable in acidic pH, under neutral pH, 70.8 ± 6.4% of SDS degradation was achieved in 120 min in BEF-MFC. A comparison of environmental impacts of BEF-MFC with up-flow MFC and electrochemical oxidation using life cycle assessment tool suggests that BEF-MFC can be one of the promising technologies for the tertiary treatment of wastewater.


Subject(s)
Bioelectric Energy Sources , Water Pollutants, Chemical , Electricity , Electrodes , Hydrogen Peroxide , Sodium Dodecyl Sulfate , Wastewater , Water Pollutants, Chemical/analysis
15.
Bioresour Technol ; 320(Pt B): 124410, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33221642

ABSTRACT

Hydrothermal carbonization (HTC) of yard waste (YW) and food waste (FW) was performed in landfill leachate (LL) to overcome the unnecessary exploitation of our limited natural resources. The physicochemical properties and combustion behavior of the resulting hydrochars were compared with those obtained using distilled water (DW) as reaction medium. Although performing HTC in LL led to lower hydrochar mass yields (43% YWH and 36% FWH) than DW (47.1% YWH and 41.5% FWH), it had minimal impact on the fuel characteristics of the hydrochars. Notably, the higher heating value of the hydrochars prepared in LL (22.8 MJ kg-1 for YWH and 30.2 MJ kg-1 for FWH) is comparable to that of conventional solid fuels, and may, therefore, be considered as inexpensive alternatives to fossil fuels. Overall, the results of this study conclusively suggest that the use of LL as an alternative moisture source can significantly improve the sustainability of HTC technology.


Subject(s)
Refuse Disposal , Water Pollutants, Chemical , Biofuels , Carbon , Food , Solid Waste , Temperature
16.
ChemistryOpen ; 9(10): 1065-1073, 2020 10.
Article in English | MEDLINE | ID: mdl-33117627

ABSTRACT

The integration of graphene or graphene oxide nanosheets into three-dimensional (3D) graphene-based macromolecular assemblies (GMAs), in the form of sponges, beads, fibres, films, and crumpled nanosheets, has greatly advanced their environmental remediation applications. This is attributed to the outstanding physicochemical characteristics and superlative mechanical features of 3D GMAs, including precise and physically linked permeable networks, enormous surface area, profound porosity, and high-class sturdiness, amongst others. In this review, the recent advancements towards the exploration of 3D GMAs as an exciting new class of high-performance adsorbents, for eliminating toxic heavy metal ions from both wastewater and freshwater, are systematically summarized and discussed, from both fundamental and applied perspectives. In particular, the numerous surface modification techniques that are actively pursued to enrich the metal adsorption capacity of 3D GMAs, are comprehensively examined. Additionally, associated challenges are pointed out and tactical research strategies and improvements are proposed, with an eye on the conceivable future.

17.
Environ Pollut ; 251: 344-353, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31091498

ABSTRACT

Graphene aerogels (GAs) are increasingly being recognized as high performance multifunctional materials to tackle our current and emerging environmental concerns. In order to extend the application potential of GAs, herein we have successfully synthesized nitrogen (N) and sulfur (S) codoped GAs (NSGAs) via a simple, scalable, and inexpensive approach. Owing to their large specific surface area (up to 132 m2 g-1), profound porosity, superior mechanical properties, and coexistence of N and S atoms with tunable atomic content and bonding configurations, the as-prepared NSGAs demonstrated exceptional absorption capacity toward a broad spectrum of oils and organic solvents, with an average absorption rate many folds higher than conventional absorbents. Further, the NSGAs exhibited excellent photocatalytic activity for the decomposition of recalcitrant organic compounds under visible light illumination due to pronounced synergistic coupling effect between the heteroatoms. Specifically, after 5 h of exposure to visible light, a degradation efficiency of over 99% was observed and more than 84% of the total organic carbon was eliminated. Radical trapping experiments revealed that superoxide anion radicals are the predominant oxygen reactive species driving the photocatalytic reactions. More importantly, the mineralization byproducts did not pose any significant antibacterial activity, illustrating the environmentally benign nature of these macroscale photocatalysts.


Subject(s)
Environmental Restoration and Remediation/methods , Graphite/chemistry , Light , Nitrogen/chemistry , Sulfur/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Catalysis , Coloring Agents/analysis , Graphite/chemical synthesis , Petroleum/analysis , Photochemistry , Porosity , Solvents/analysis , Surface Properties
18.
J Colloid Interface Sci ; 534: 574-585, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30265985

ABSTRACT

Nitrogen (N)-doped graphene aerogels (GAs) have recently emerged as a promising class of photocatalytic materials for a multitude of environmental applications. Their photocatalytic activity depends strongly on the type of N bonding configurations created in the host lattice, which in turn relies on the choice of nitrogen sources employed as molecular precursors. However, there is still no systematic assessment of the photocatalytic activity of N-doped GAs (NGAs) synthesized using different nitrogen containing precursors. Herein, we developed a series of NGAs using different kinds of amine, such as primary and secondary amines, as nitrogen precursors and rigorously evaluated their photocatalytic activity toward degradation of acridine orange under visible light irradiation. The bonding state of N atoms in the NGAs could indeed be effectively modulated by a judicious selection of an appropriate nitrogen precursor. Primary amines resulted mainly in pyridinic N structures whereas pyrrolic N was predominantly obtained from secondary amines. Irrespective of the source of nitrogen, the photocatalytic efficiency of the NGAs was directly correlated to the concentration of pyrrolic N defects in their constituent graphene building blocks. Further, the photodegradation byproducts did not present any significant antibacterial activity, reflecting the ecofriendly nature of the as-prepared novel photocatalysts.

19.
Sci Rep ; 6: 21537, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26879393

ABSTRACT

Atmospheric CO2 concentrations continue to rise rapidly in response to increased combustion of fossil fuels, contributing to global climate change. In order to mitigate the effects of global warming, development of new materials for cost-effective and energy-efficient CO2 capture is critically important. Graphene-based porous materials are an emerging class of solid adsorbents for selectively removing CO2 from flue gases. Herein, we report a simple and scalable approach to produce three-dimensional holey graphene frameworks with tunable porosity and pore geometry, and demonstrate their application as high-performance CO2 adsorbents. These holey graphene macrostructures exhibit a significantly improved specific surface area and pore volume compared to their pristine counterparts, and can be effectively used in post-combustion CO2 adsorption systems because of their intrinsic hydrophobicity together with good gravimetric storage capacities, rapid removal capabilities, superior cycling stabilities, and moderate initial isosteric heats. In addition, an exceptionally high CO2 over N2 selectivity can be achieved under conditions relevant to capture from the dry exhaust gas stream of a coal burning power plant, suggesting the possibility of recovering highly pure CO2 for long-term sequestration and/or utilization for downstream applications.

20.
Bioresour Technol ; 161: 310-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24727353

ABSTRACT

Hydrothermal carbonization of urban food waste was carried out to prepare hydrochars for removal of Acridine Orange and Rhodamine 6G dyes from contaminated water. The chemical composition and microstructure properties of the synthesized hydrochars were investigated in details. Batch adsorption experiments revealed that hydrochars with lower degree of carbonization were more efficient in adsorption of dyes. Operational parameters such as pH and temperature had a strong influence on the dye uptake process. The adsorption equilibrium data showed excellent fit to the Langmuir isotherm. The pseudo-second-order kinetic model provided a better correlation for the experimental kinetic data in comparison to the pseudo-first-order kinetic model. Thermodynamic investigations suggested that dye adsorption onto hydrochars was spontaneous and endothermic. The mechanism of dye removal appears to be associated with physisorption. An artificial neural network (ANN)-based modelling was further carried out to predict the dye adsorption capacity of the hydrochars.


Subject(s)
Acridine Orange/isolation & purification , Charcoal/chemistry , Garbage , Rhodamines/isolation & purification , Water Pollutants, Chemical/isolation & purification , Adsorption , Hot Temperature , Kinetics , Neural Networks, Computer , Textile Industry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...