Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Hippocampus ; 31(2): 170-188, 2021 02.
Article in English | MEDLINE | ID: mdl-33146453

ABSTRACT

The hippocampus carries out multiple functions: spatial cognition dorsally (DH) and regulation of emotionality-driven behavior ventrally (VH). Previously, we showed that dendrites of DH and VH pyramidal neurons of female rats are still developing robustly during adolescence and are altered by the experience of food restriction and voluntary exercise on a wheel. We tested whether such anatomical changes during adolescence impact anxiety-like behavior and spatial cognition. Four groups of female rats were evaluated for these behaviors: those with wheel access in its cage from postnatal day (P) 36-44 (EX); those with food access restricted to 1 hr per day, from P40 to 44 (FR); those with EX from P36 to 44, combined with FR from P40 to 44, which we will refer to as EX + FR; and controls, CON (no EX, no FR). Open field test for anxiety-like behavior and active place avoidance test for spatial cognition were conducted at P47-49, the age when food restricted animals have restored body weight, or at P54-56, to identify more enduring effects. Anxiety-like behavior was elevated for the EX and FR groups at P47-49 but not for the EX + FR group. By P54-56, the EX + FR and EX groups exhibited less anxiety-like behavior, indicating a beneficial delayed main effect of exercise. There was a beneficial main effect of food restriction upon cognition, as the FR group showed cognition superior to CONs' at P44-46 and P54-56, while the EX + FR animals also showed enhanced spatial learning at P54-56. EX + FR animals with best adaptation to the feeding schedule showed the best spatial learning performance but with a delay. The EX group exhibited only a transient improvement. These findings indicate that FR, EX, and EX + FR in mid-adolescence are all beneficial in reducing anxiety-like behavior and improving spatial cognition but with subtle differences in the timing of their manifestation, possibly reflecting the protracted maturation of the hippocampus.


Subject(s)
Pyramidal Cells , Spatial Learning , Animals , Anxiety , Body Weight , Female , Hippocampus , Rats
2.
Neuropsychopharmacology ; 45(12): 2079-2086, 2020 11.
Article in English | MEDLINE | ID: mdl-32663840

ABSTRACT

Sex is a biological variable that contributes to the incidence, clinical course, and treatment outcome of brain disorders. Chief among these are disorders associated with the dopamine system. These include Parkinson's disease, ADHD, schizophrenia, and mood disorders, which show stark differences in prevalence and outcome between men and women. In order to reveal the influence of biological sex as a risk factor in these disorders, there is a critical need to collect fundamental information about basic properties of the dopamine system in males and females. In Long Evans rats, we measured dynamic and static properties related to the mesolimbic dopamine system. Static measures included assessing ventral tegmental area (VTA) dopamine cell number and volume and expression of tyrosine hydroxylase and dopamine transporter. Dynamic measures in behaving animals included assessing (1) VTA neuronal encoding during learning of a cue-action-reward instrumental task and (2) dopamine release in the nucleus accumbens in response to electrical stimulation of the VTA, vesicular depletion of dopamine, and amphetamine. We found little or no sex difference in these measures, suggesting sexual congruency in fundamental static and dynamic properties of dopamine neurons. Thus, dopamine related sex-differences are likely mediated by secondary mechanisms that flexibly influence the function of the dopamine cells and circuits. Finally, we noted that most behavioral sex differences had been reported in Sprague-Dawley rats and repeated some of the above measures in that strain. We found some sex differences in those animals highlighting the importance of considering strain differences in experimental design and result interpretation.


Subject(s)
Dopamine , Ventral Tegmental Area , Animals , Female , Male , Nucleus Accumbens , Rats , Rats, Long-Evans , Rats, Sprague-Dawley
3.
Brain Struct Funct ; 225(3): 1165, 2020 04.
Article in English | MEDLINE | ID: mdl-32006146

ABSTRACT

The title of Fig. 6 in the original article was incorrectly published as "normalized cytoplasmic NR2A".

4.
Cogn Affect Behav Neurosci ; 19(6): 1404-1417, 2019 12.
Article in English | MEDLINE | ID: mdl-31342271

ABSTRACT

Differences in the prevalence and presentation of psychiatric illnesses in men and women suggest that neurobiological sex differences confer vulnerability or resilience in these disorders. Rodent behavioral models are critical for understanding the mechanisms of these differences. Reward processing and punishment avoidance are fundamental dimensions of the symptoms of psychiatric disorders. Here we explored sex differences along these dimensions using multiple and distinct behavioral paradigms. We found no sex difference in reward-guided associative learning but a faster punishment-avoidance learning in females. After learning, females were more sensitive than males to probabilistic punishment but less sensitive when punishment could be avoided with certainty. No sex differences were found in reward-guided cognitive flexibility. Thus, sex differences in goal-directed behaviors emerged selectively when there was an aversive context. These differences were critically sensitive to whether the punishment was certain or unpredictable. Our findings with these new paradigms provide conceptual and practical tools for investigating brain mechanisms that account for sex differences in susceptibility to anxiety and impulsivity. They may also provide insight for understanding the evolution of sex-specific optimal behavioral strategies in dynamic environments.


Subject(s)
Punishment , Reward , Sex Characteristics , Animals , Anxiety/chemically induced , Anxiety/psychology , Association Learning , Avoidance Learning/drug effects , Carbolines/pharmacology , Cognition , Conditioning, Operant , Dose-Response Relationship, Drug , Female , Male , Maze Learning , Rats , Uncertainty
5.
Cereb Cortex ; 29(10): 4035-4049, 2019 09 13.
Article in English | MEDLINE | ID: mdl-30462186

ABSTRACT

Adolescence is marked by increased vulnerability to mental disorders and maladaptive behaviors, including anorexia nervosa. Food-restriction (FR) stress evokes foraging, which translates to increased wheel running exercise (EX) for caged rodents, a maladaptive behavior, since it does not improve food access and exacerbates weight loss. While almost all adolescent rodents increase EX following FR, some then become resilient by suppressing EX by the second-fourth FR day, which minimizes weight loss. We asked whether GABAergic plasticity in the hippocampus may underlie this gain in resilience. In vitro slice physiology revealed doubling of pyramidal neurons' GABA response in the dorsal hippocampus of food-restricted animals with wheel access (FR + EX for 4 days), but without increase of mIPSC amplitudes. mIPSC frequency increased by 46%, but electron microscopy revealed no increase in axosomatic GABAergic synapse number onto pyramidal cells and only a modest increase (26%) of GABAergic synapse lengths. These changes suggest increase of vesicular release probability and extrasynaptic GABAA receptors and unsilencing of GABAergic synapses. GABAergic synapse lengths correlated with individual's suppression of wheel running and weight loss. These analyses indicate that EX can have dual roles-exacerbate weight loss but also promote resilience to some by dampening hippocampal excitability.


Subject(s)
Adaptation, Psychological/physiology , Food Deprivation/physiology , Hippocampus/physiopathology , Motor Activity , Pyramidal Cells/physiology , Stress, Psychological/physiopathology , Weight Loss/physiology , gamma-Aminobutyric Acid/physiology , Animals , Female , Inhibitory Postsynaptic Potentials , Neural Inhibition , Physical Exertion , Rats, Sprague-Dawley
6.
Synapse ; 72(7): e22034, 2018 07.
Article in English | MEDLINE | ID: mdl-29631321

ABSTRACT

Adolescence is accompanied by increased vulnerability to psychiatric illnesses, including anxiety, depression, schizophrenia, and eating disorders. The hippocampus is important for regulating emotional state through its ventral compartment and spatial cognition through its dorsal compartment. Previous animal studies have examined hippocampal development at stages before, after or at single time points during adolescence. However, only one study has investigated morphological changes at multiple time points during adolescence, and no study has yet compared developmental changes of dorsal versus ventral hippocampi. We analyzed the dorsal and ventral hippocampi of rats to determine the developmental trajectory of Golgi-stained hippocampal CA1 neurons by sampling at five time points, ranging from postnatal day (P) 35 (puberty) to 55 (end of adolescence). We show that the dorsal hippocampus undergoes transient dendritic retractions in stratum radiatum (SR), while the ventral hippocampus undergoes transient dendritic growths in SR. During adulthood, stress and hormonal fluctuations have been shown to alter the physiology and morphology of hippocampal neurons, but studies of the impact of these factors upon adolescent hippocampi are scarce. In addition, we show that female-female pair housing from P 36-44 significantly increases branching in the dorsal SR and reduces branching in the ventral SR. Taken together with data on spine density, these results indicate that pyramidal cells in the dorsal and ventral CA1 of female adolescents are remodeled differently following single housing. Social housing during adolescence elicits pathway-specific changes in the hippocampus that may underlie behavioral benefits, including stability of emotion regulation and superior cognition.


Subject(s)
CA1 Region, Hippocampal/cytology , Neuronal Outgrowth , Pyramidal Cells/cytology , Stress, Psychological/pathology , Animals , CA1 Region, Hippocampal/growth & development , Dendrites/physiology , Female , Rats , Rats, Sprague-Dawley , Social Isolation
7.
Brain Struct Funct ; 222(1): 317-339, 2017 01.
Article in English | MEDLINE | ID: mdl-27056728

ABSTRACT

The vermis or "spinocerebellum" receives input from the spinal cord and motor cortex for controlling balance and locomotion, while the longitudinal hemisphere region or "cerebro-cerebellum" is interconnected with non-motor cortical regions, including the prefrontal cortex that underlies decision-making. Noradrenaline release in the cerebellum is known to be important for motor plasticity but less is known about plasticity of the cerebellar noradrenergic (NA) system, itself. We characterized plasticity of dopamine ß-hydroxylase-immunoreactive NA fibers in the cerebellum of adolescent female rats that are evoked by voluntary wheel running, food restriction (FR) or by both, in combination. When 8 days of wheel access was combined with FR during the last 4 days, some responded with excessive exercise, choosing to run even during the hours of food access: this exacerbated weight loss beyond that due to FR alone. In the vermis, exercise, with or without FR, shortened the inter-varicosity intervals and increased varicosity density along NA fibers, while excessive exercise, due to FR, also shortened NA fibers. In contrast, the hemisphere required the FR-evoked excessive exercise to evoke shortened inter-varicosity intervals along NA fibers and this change was exhibited more strongly by rats that suppressed the FR-evoked excessive exercise, a behavior that minimized weight loss. Presuming that shortened inter-varicosity intervals translate to enhanced NA release and synthesis of norepinephrine, this enhancement in the cerebellar hemisphere may contribute towards protection of individuals from the life-threatening activity-based anorexia via relays with higher-order cortical areas that mediate the animal's decision to suppress the innate FR-evoked hyperactivity.


Subject(s)
Adrenergic Neurons/cytology , Adrenergic Neurons/physiology , Anorexia/pathology , Anorexia/physiopathology , Cerebellum/cytology , Cerebellum/physiology , Motor Activity , Neuronal Plasticity , Animals , Cerebellar Vermis/cytology , Cerebellar Vermis/physiology , Disease Models, Animal , Dopamine/physiology , Dopamine beta-Hydroxylase/metabolism , Eating , Female , Rats , Rats, Sprague-Dawley
8.
Brain Res ; 1654(Pt B): 102-115, 2017 01 01.
Article in English | MEDLINE | ID: mdl-26779892

ABSTRACT

Anorexia nervosa is a mental illness that emerges primarily during early adolescence, with mortality rate that is 200 times higher than that of suicide. The illness is characterized by intense fear of gaining weight, heightened anxiety, obstinate food restriction, often accompanied by excessive exercise, in spite of mounting hunger. The illness affects females nine times more often than males, suggesting an endocrine role in its etiology. Its relapse rate exceeds 25%, yet there are no accepted pharmacological treatments to prevent this. Here, we summarize studies from this laboratory that have used adolescent female rodents in activity-based anorexia (ABA), an animal model of anorexia nervosa, with the goal of identifying neurobiological underpinnings of this disease. We put forth a hypothesis that a GABAergic mechanism within the hippocampus is central to regulating an individual׳s anxiety which, in turn, strongly influences the individual׳s resilience/vulnerability to ABA. In particular, we propose that ionotropic GABAA receptors containing the subunits alpha4 and delta, are at play for exerting shunting inhibition upon hippocampal pyramidal neurons that become more excitable during ABA. Since these receptors confer insensitivity to benzodiazepines, this pharmacological profile of ABA fits with lack of report indicating efficacy of benzodiazepines in reducing the anxiety experienced by individuals with anorexia nervosa. The idea that the GABAergic system of the hippocampus regulates resilience/vulnerability to anorexia nervosa complements current opinions about the important roles of the prefrontal cortex, amygdala, striatum, gustatory pathways and feeding centers of the hypothalamus and of the neuromodulators, serotonin and dopamine, in the etiology of the disease. This article is part of a Special Issue entitled SI: Adolescent plasticity.


Subject(s)
Anorexia Nervosa/physiopathology , Anxiety/physiopathology , Hippocampus/growth & development , Hippocampus/physiopathology , Resilience, Psychological , Synapses/physiology , Animals , Anorexia Nervosa/pathology , Anxiety/pathology , Disease Models, Animal , Female , Hippocampus/pathology , Mice , Rats , Sexual Maturation , Synapses/pathology
9.
Brain Struct Funct ; 222(5): 2271-2294, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27915379

ABSTRACT

Hunger evokes foraging. This innate response can be quantified as voluntary wheel running following food restriction (FR). Paradoxically, imposing severe FR evokes voluntary FR, as some animals choose to run rather than eat, even during limited periods of food availability. This phenomenon, called activity-based anorexia (ABA), has been used to identify brain changes associated with FR and excessive exercise (EX), two core symptoms of anorexia nervosa (AN), and to explore neurobiological bases of AN vulnerability. Previously, we showed a strong positive correlation between suppression of FR-evoked hyperactivity, i.e., ABA resilience, and levels of extra-synaptic GABA receptors in stratum radiatum (SR) of hippocampal CA1. Here, we tested for the converse: whether animals with enhanced expression of NMDA receptors (NMDARs) exhibit greater levels of FR-evoked hyperactivity, i.e., ABA vulnerability. Four groups of animals were assessed for NMDAR levels at CA1 spines: (1) ABA, in which 4 days of FR was combined with wheel access to allow voluntary EX; (2) FR only; (3) EX only; and (4) control (CON) that experienced neither EX nor FR. Electron microscopy revealed that synaptic NR2A-NMDARs and NR2B-NMDARs levels are significantly elevated, relative to CONs'. Individuals' ABA severity, based on weight loss, correlated with synaptic NR2B-NMDAR levels. ABA resilience, quantified as suppression of hyperactivity, correlated strongly with reserve pools of NR2A-NMDARs in spine cytoplasm. NR2A- and NR2B-NMDAR measurements correlated with spinous prevalence of an F-actin binding protein, drebrin, suggesting that drebrin enables insertion of NR2B-NMDAR to and retention of NR2A-NMDARs away from synaptic membranes, together influencing ABA vulnerability.


Subject(s)
Hippocampus/metabolism , Motor Activity/physiology , Neuropeptides/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Actins/metabolism , Animals , Disease Models, Animal , Hunger , Mice, Inbred C57BL , Physical Conditioning, Animal , Temporal Lobe/metabolism
11.
Hippocampus ; 24(12): 1421-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24976385

ABSTRACT

Anorexia nervosa (AN) is a psychiatric illness characterized by restricted eating and irrational fears of gaining weight. There is no accepted pharmacological treatment for AN, and AN has the highest mortality rate among psychiatric illnesses. Anorexia nervosa most commonly affects females during adolescence, suggesting an effect of sex and hormones on vulnerability to the disease. Activity-based anorexia (ABA) is a rodent model of AN that shares symptoms with AN, including over-exercise, elevation of stress hormones, and genetic links to anxiety traits. We previously reported that ABA in adolescent female rats results in increased apical dendritic branching in CA1 pyramidal cells of the ventral hippocampus at postnatal day 44 (P44). To examine the long-term effects of adolescent ABA (P44) in female rats, we compared the apical branching in the ventral hippocampal CA1 after recovery from ABA (P51) and after a relapse of ABA (P55) with age-matched controls. To examine the age-dependence of the hippocampal plasticity, we examined the effect of ABA during adulthood (P67). We found that while ABA at P44 resulted in increased branching of ventral hippocampal pyramidal cells, relapse of ABA at P55 resulted in decreased branching. ABA induced during adulthood did not have an effect on dendritic branching, suggesting an age-dependence of the vulnerability to structural plasticity. Cells from control animals were found to exhibit a dramatic increase in branching, more than doubling from P44 to P51, followed by pruning from P51 to P55. The proportion of mature spines on dendrites from the P44-ABA animals is similar to that on dendrites from P55-CON animals. These results suggest that the experience of ABA may cause precocious anatomical development of the ventral hippocampus. Importantly, we found that adolescence is a period of continued development of the hippocampus, and increased vulnerability to mental disorders during adolescence may be due to insults during this developmentally critical period.


Subject(s)
Anorexia/physiopathology , CA1 Region, Hippocampal/growth & development , CA1 Region, Hippocampal/physiopathology , Motor Activity/physiology , Pyramidal Cells/growth & development , Pyramidal Cells/physiopathology , Animals , Anorexia/pathology , Body Weight , CA1 Region, Hippocampal/pathology , Dendrites/pathology , Dendrites/physiology , Disease Models, Animal , Female , Neuronal Plasticity/physiology , Pyramidal Cells/pathology , Rats, Sprague-Dawley , Recurrence
12.
Brain Struct Funct ; 219(6): 1935-45, 2014 Nov.
Article in English | MEDLINE | ID: mdl-23959245

ABSTRACT

Anorexia nervosa (AN) is an eating disorder to which adolescent females are particularly vulnerable. Like AN, activity-based anorexia (ABA), a rodent model of AN, results in elevation of stress hormones and has genetic links to anxiety disorders. The hippocampus plays a key role in the regulation of anxiety and responds with structural changes to hormones and stress, suggesting that it may play a role in AN. The hippocampus of ABA animals exhibits increased brain-derived neurotrophic factor and increased GABA receptor expression, but the structural effects of ABA have not been studied. We used Golgi staining of neurons to determine whether ABA in female rats during adolescence results in structural changes to the apical dendrites in hippocampal CA1 and contrasted to the effects of food restriction (FR) and exercise (EX), the environmental factors used to induce ABA. In the dorsal hippocampus, which preferentially mediates spatial learning and cognition, cells of ABA animals had less total dendritic length and fewer dendritic branches in stratum radiatum (SR) than in control (CON). In the ventral hippocampus, which preferentially mediates anxiety, ABA evoked more branching in SR than CON. In both dorsal and ventral regions, the main effect of exercise was localized to the SR while the main effect of food restriction occurred in the stratum lacunosum-moleculare. Taken together with data on spine density, these results indicate that ABA elicits pathway-specific changes in the hippocampus that may underlie the increased anxiety and reduced behavioral flexibility observed in ABA.


Subject(s)
Anorexia/pathology , CA1 Region, Hippocampal/pathology , Dendrites/pathology , Animals , Disease Models, Animal , Female , Motor Activity , Physical Conditioning, Animal , Rats , Rats, Sprague-Dawley
13.
Synapse ; 68(1): 1-15, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23766101

ABSTRACT

Anorexia nervosa (AN) is an eating disorder characterized by self-imposed severe starvation, excessive exercise, and anxiety. The onset of AN is most often at puberty, suggesting that gonadal hormonal fluctuations may contribute to AN vulnerability. Activity-based anorexia (ABA) is an animal model that reproduces some of the behavioral phenotypes of AN, including the paradoxical increase in voluntary exercise following food restriction. The basal amygdala as well as the GABAergic system regulate trait anxiety. We therefore examined the subcellular distribution of GABA receptors (GABARs) in the basal amygdala of female pubertal rats and specifically of their α4 subunits, because expression of α4-containing GABARs is regulated by gonadal hormone fluctuations. Moreover, because these GABARs reduce neuronal excitability through shunting of EPSPs, we quantified the frequency of occurrence of these GABARs adjacent to excitatory synapses. Electron microscopic immunoctychemistry revealed no change in the frequency of association of α4 subunits with excitatory synapses on dendritic spines, whether in the anterior (Bregma -2.8 mm) or caudal (Bregma -3.8 mm) portion of the basal amygdala. Sholl analysis of golgi-stained neurons also revealed no change in the extent of dendritic branching by these densely spiny, pyramidal-like neurons. However, there was an increase of membranous α4 subunits near excitatory synapses on dendritic shafts, specifically in the caudal basal amygdala, and this was accompanied by a rise of α4 subunits intracellularly. Because most dendritic shafts exhibiting excitatory synapses are GABAergic interneurons, the results predict disinhibition, which would increase excitability of the amygdaloid network, in turn augmenting ABA animals' anxiety.


Subject(s)
Amygdala/metabolism , Anorexia/metabolism , Dendrites/metabolism , Excitatory Postsynaptic Potentials , Receptors, GABA-A/metabolism , Synapses/metabolism , Amygdala/physiology , Amygdala/physiopathology , Animals , Dendrites/physiology , Female , Golgi Apparatus/metabolism , Male , Protein Transport , Rats , Rats, Sprague-Dawley , Receptors, GABA-A/genetics , Synapses/physiology
14.
J Neurosci ; 30(42): 14116-26, 2010 Oct 20.
Article in English | MEDLINE | ID: mdl-20962232

ABSTRACT

Changes in dendritic spine turnover are a major mechanism of experience-dependent plasticity in the adult neocortex. Dendritic spine plasticity may also contribute to functional recovery after stroke, but in that setting its expression may be complicated by alterations in local tissue perfusion, especially around the infarct. Using adult Thy-1 GFP-M mice, we simultaneously recorded long-term spine dynamics in apical dendrites from layer 5 pyramidal cells and blood flow from surrounding capillaries with in vivo two-photon microscopy in peri-infarct cortex before and after unilateral middle cerebral artery occlusion. Blood flow in peri-infarct cortex decreased significantly immediately after stroke and improved gradually over time, in a distance-dependent manner from the epicenter of the infarct. However, local tissue perfusion was never fully restored even after a 3 month recovery period. On average, surviving layer 5 pyramidal neurons experienced a ∼20% decrease in spine density acutely after stroke but eventually recovered. The dynamics of this improvement were different depending on the degree of tissue perfusion acutely after arterial occlusion. Cells in ischemic areas closer to the infarct returned to normal spine density levels slowly by retaining spines, while cells in more remote regions with preserved blood flow recovered faster by adding more spines, eventually surpassing baseline spine density by 15%. Our data suggest that maintaining tissue perfusion in the area surrounding the infarct could hasten or augment synaptic plasticity and functional recovery after stroke.


Subject(s)
Cerebrovascular Circulation/physiology , Dendrites/physiology , Infarction, Middle Cerebral Artery/pathology , Neuronal Plasticity/physiology , Animals , Behavior, Animal/physiology , Brain Ischemia/pathology , Capillaries/physiology , Dendritic Spines/physiology , Female , Green Fluorescent Proteins/genetics , Half-Life , Infarction, Middle Cerebral Artery/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neovascularization, Physiologic/physiology
15.
Front Neuroanat ; 4: 10, 2010.
Article in English | MEDLINE | ID: mdl-20339484

ABSTRACT

Cajal-Retzius (CR) neurons play a critical role in cortical neuronal migration, but their exact fate after the completion of neocortical lamination remains a mystery. Histological evidence has been unable to unequivocally determine whether these cells die or undergo a phenotypic transformation to become resident interneurons of Layer 1 in the adult neocortex. To determine their ultimate fate, we performed chronic in vivo two-photon imaging of identified CR neurons during postnatal development in mice that express the green fluorescent protein (GFP) under the control of the early B-cell factor 2 (Ebf2) promoter. We find that, after birth, virtually all CR neurons in mouse neocortex express Ebf2. Although postnatal CR neurons undergo dramatic morphological transformations, they do not migrate to deeper layers. Instead, their gradual disappearance from the cortex is due to apoptotic death during the second postnatal week. A small fraction of CR neurons present at birth survive into adulthood. We conclude that, in addition to orchestrating cortical layering, a subset of CR neurons must play other roles beyond the third postnatal week.

SELECTION OF CITATIONS
SEARCH DETAIL
...