Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10686, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724621

ABSTRACT

Modulation instability is a phenomenon in which a minor disturbance within a carrier wave gradually amplifies over time, leading to the formation of a series of compressed waves with higher amplitudes. In terms of frequency analysis, this process results in the generation of new frequencies on both sides of the original carrier wave frequency. We study the impact of fourth-order dispersion on this modulation instability in the context of nonlinear optics that lead to the formation of a series of pulses in the form of Akhmediev breather. The Akhmediev breather, a solution to the nonlinear Schrödinger equation, precisely elucidates how modulation instability produces a sequence of periodic pulses. We observe that when weak fourth-order dispersion is present, significant resonant radiation occurs, characterized by two modulation frequencies originating from different spectral bands. As an Akhmediev breather evolves, these modulation frequencies interact, resulting in a resonant amplification of spectral sidebands on either side of the breather. When fourth-order dispersion is of intermediate strength, the spectral bandwidth of the Akhmediev breather diminishes due to less pronounced resonant interactions, while stronger dispersion causes the merging of the two modulation frequency bands into a single band. Throughout these interactions, we witness a complex energy exchange process among the phase-matched frequency components. Moreover, we provide a precise explanation for the disappearance of the Akhmediev breather under weak fourth-order dispersion and its resurgence with stronger values. Our study demonstrates that Akhmediev breathers, under the influence of fourth-order dispersion, possess the capability to generate infinitely many intricate yet coherent patterns in the temporal domain.

2.
Phys Rev E ; 107(1-1): 014212, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36797948

ABSTRACT

Using a generalized nonlinear Schrödinger equation, we investigate the transformation of a fundamental rogue wave solution to a collection of solitons. Taking the third-order dispersion, self-steepening, and Raman-induced self-frequency shift as the generalizing effects, we systematically observe how a fundamental rogue wave has an impact on its surrounding continuous wave background and reshapes its own characteristics while a group of solitons are created. Applying a local inverse scattering technique based on the periodization of an isolated structure, we show that the third-order dispersion and Raman-induced self-frequency shift generates a group of solitons in the neighborhood where the rogue wave solution emerges. Using a volume interpretation, we show that the self-steepening effect stretches the rogue wave solution by reducing its volume. Also, we find that with the Raman-induced self-frequency shift, a decelerating rogue wave generates a red-shifted Raman radiation while the rogue wave itself turns into a slow-moving soliton. We show that when third-order dispersion, self-steepening, and Raman-induced self-frequency shift act together on the rogue wave solution, each of these effects favor the rogue wave to generate a group of solitons near where it first emerges while the rogue wave itself also becomes one of these solitons.

3.
Chaos ; 28(12): 123116, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30599532

ABSTRACT

We investigate the dynamics of modulation instability (MI) and the corresponding breather solutions to the extended nonlinear Schrödinger equation that describes the full scale growth-decay cycle of MI. As an example, we study modulation instability in connection with the fourth-order equation in detail. The higher-order equations have free parameters that can be used to control the growth-decay cycle of the MI; that is, the growth rate curves, the time of evolution, the maximal amplitude, and the spectral content of the Akhmediev Breather strongly depend on these coefficients.

4.
Phys Rev E ; 95(6-1): 062226, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28709292

ABSTRACT

We study the exact first-order soliton and breather solutions of the integrable nonlinear Schrödinger equations hierarchy up to fifth order. We reveal the underlying physical mechanism which transforms a breather into a soliton. Furthermore, we show how the dynamics of the Akhmediev breathers which exist on a constant background as a result of modulation instability, is connected with solitons on a zero background. We also demonstrate that, while a first-order rogue wave can be directly transformed into a soliton, higher-order rogue wave solutions become rational two-soliton solutions with complex collisional structure on a background. Our results will have practical implications in supercontinuum generation, turbulence, and similar other complex nonlinear scenarios.

5.
Phys Rev E ; 96(4-1): 042209, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29347542

ABSTRACT

We present one- and two-breather solutions of the fourth-order nonlinear Schrödinger equation. With several parameters to play with, the solution may take a variety of forms. We consider most of these cases including the general form and limiting cases when the modulation frequencies are 0 or coincide. The zero-frequency limit produces a combination of breather-soliton structures on a constant background. The case of equal modulation frequencies produces a degenerate solution that requires a special technique for deriving. A zero-frequency limit of this degenerate solution produces a rational second-order rogue wave solution with a stretching factor involved. Taking, in addition, the zero limit of the stretching factor transforms the second-order rogue waves into a soliton. Adding a differential shift in the degenerate solution results in structural changes in the wave profile. Moreover, the zero-frequency limit of the degenerate solution with differential shift results in a rogue wave triplet. The zero limit of the stretching factor in this solution, in turn, transforms the triplet into a singlet plus a low-amplitude soliton on the background. A large value of the differential shift parameter converts the triplet into a pure singlet.

SELECTION OF CITATIONS
SEARCH DETAIL
...