Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Technol Int ; : 10820132231159819, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36879485

ABSTRACT

Plant-based protein sources as a sustainable alternative to animal sources are highly relevant for food and dietary supplements industries. Plant proteins are becoming popular as an eco-friendly source for meeting global protein requirements due to their importance in nutrition, management of metabolic diseases, biological activities, functionality in processed food products and their low carbon footprints. We applied biochemical protein extraction protocol and prepared protein concentrate from an underutilised cereal, foxtail millet, with plausible applications in foods and supplements. Herein efforts were utilised to obtain foxtail millet protein (FMP) concentrate by means of standardisation of processes of extraction cum isolation. The conditions including flour to solvent ratio, extraction-precipitation pH, dissolution time, etc. were optimised to significantly improve protein yield and recovery. The FMP concentrate prepared was also analysed for nutritional composition, bioactive compounds, amino acid content and digestion properties in comparison to packaged brown rice protein concentrate. The protein concentrate prepared was found to have high digestibility, rich in essential amino acids with good phenolic and flavonoid content, thereby making it a potential sensory and antioxidant additive for food/pharmaceutical applications.

2.
Curr Protein Pept Sci ; 22(9): 666-674, 2021 Dec 27.
Article in English | MEDLINE | ID: mdl-34751114

ABSTRACT

The moonlighting protein, Prdx-6, exhibits peroxidase activity, phospholipase activity, and lysophosphatidylcholine acyltransferase (LPCAT) activity. Although it is ubiquitous in expression, its level is prominently high in the lung. Prdx-6 has been known to be an important enzyme for the maintenance of normal lung physiologies including, anti-oxidant defense, lung surfactant homeostasis, and cell signaling. Studies further unveiled that the altered activity (peroxidase or ai- PLA2) of this enzyme is linked with various lung pathologies or diseases. In the present article, we attempted to address the various pathophysiologies or disease conditions (like lung ischemia, hyperoxia, lung cancer, emphysema, and acute lung injury) wherein Prdx-6 is involved. The study implicates that Prdx-6 could be used as a common drug target for multiple lung diseases. Important future insights have also been incorporated.


Subject(s)
Peroxiredoxin VI
3.
Sci Rep ; 11(1): 9657, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33958651

ABSTRACT

Peroxiredoxin 6 (Prdx6), the ubiquitously expressed enzyme belonging to the family of peroxidases, namely, peroxiredoxins, exhibits a unique feature of functional compartmentalization within cells. Whereas, the enzyme localized in cytosol shows glutathione peroxidase activity, its lysosomal counterpart performs calcium independent phospholipase A2 (aiPLA2) activity. Like any true moonlighting protein, these two activities of Prdx6 are mutually exclusive of each other as a function of the pH of the cellular compartments. Differential substrate preference at different pH (i.e. peroxidised phospholipids at neutral pH and reduced phospholipids at acidic pH) is considered to be the reason for this behavior. To gain insight into the pH-induced structural-functional interplay we have systematically evaluated conformational variations, thermodynamic stability of the protein and quaternary state of the conformers at both pH 7.0 and 4.0. Our findings suggest that change in pH allows alterations in native states of Prdx6 at pH 7.0 and 4.0 such that the changes make the protein resistant to thermal denaturation at low pH.


Subject(s)
Lysosomes/metabolism , Peroxiredoxin VI/chemistry , Calcium/metabolism , Chromatography, Gel , Circular Dichroism , Fluorescence Resonance Energy Transfer , Hot Temperature , Humans , Hydrogen Peroxide/metabolism , Hydrogen-Ion Concentration , Peroxiredoxin VI/metabolism , Protein Structure, Quaternary , Protein Unfolding , Spectrometry, Fluorescence , Structure-Activity Relationship , Thermodynamics
4.
Sci Rep ; 10(1): 17416, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060708

ABSTRACT

Peroxiredoxin 6 (Prdx6) is a ubiquitously expressed antioxidant non-selenium glutathione peroxidase that is known to play a major role in various physiological and pathological processes. It belongs to the family of peroxidases (referred to as Peroxiredoxins, Prdx's) that work independently of any prosthetic groups or co-factors, and instead utilize a peroxidatic thiol residue for peroxide reduction. Mammalian Prdx's are classified according to the number of Cys implicated in their catalytic activity by the formation of either inter-molecular (typical 2-Cys, Prdx1-4) or intra-molecular (atypical 2-Cys, Prdx5) disulfide bond, or non-covalent interactions (1-Cys, Prdx6). The typical and atypical 2-Prdx's have been identified to show decamer/dimer and monomer/dimer transition, respectively, upon oxidation of their peroxidatic cysteine. However, the alterations in the oligomeric status of Prdx6 as a function of peroxidatic thiol's redox state are still ambiguous. While the crystal structure of recombinant human Prdx6 is resolved as a dimer, the solution structures are reported to have both monomers and dimers. In the present study, we have employed several spectroscopic and electrophoretic probes to discern the impact of change in the redox status of peroxidatic cysteine on conformation and oligomeric status of Prdx6. Our study indicates Prdx6's peroxidase activity to be a redox-based conformation driven process which essentially involves monomer-dimer transition.


Subject(s)
Peroxiredoxin VI/metabolism , Catalysis , Cysteine/metabolism , Electrophoresis, Polyacrylamide Gel , Humans , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Peroxiredoxin VI/chemistry , Protein Structure, Quaternary , Spectrum Analysis/methods
5.
Int J Biol Macromol ; 149: 1139-1150, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32018008

ABSTRACT

Peroxiredoxin 6 (Prdx6) is a ubiquitously expressed 1-cysteine Peroxiredoxin found throughout all phyla. In mammals, under different physiological conditions, it has evolved from a peroxidase to a multifunctional enzyme. Among the mammalian Prdx6's, human and rat Prdx6's are the most extensively studied. Our study revealed that human and rat Prdx6's exhibit differences in their peroxidase activity. These two Prdx6's have only 8% difference in their primary sequence (with 19 amino acids) with no apparent modification at any of the key conserved residues. In the present communication, we have investigated the roles of thermodynamics, structure and internal flexibility of Prdx6 to account for the difference in their peroxidase activity. We discovered that these amino acid variations have led to structural alterations in human Prdx6 so that it shows enhanced intrinsic dynamics (or flexibility) than the rat protein. We could also identify the gain of intrinsic dynamics of the catalytic site in human Prdx6 due to relocation of an important active site residue (R132) to the loop region as the most plausible reason for high catalytic activity in the human protein as compared to rat variant. Since it is the thioredoxin fold that upholds the peroxidase function, certain structural alteration in the Prdx6 structure might help to regulate the efficiency of thioredoxin folds. Our results hint that Prdx6 might have a cis-acting regulatory sequence(s).


Subject(s)
Antioxidants/metabolism , Peroxiredoxin VI/genetics , Regulatory Sequences, Nucleic Acid/genetics , Amino Acid Sequence , Animals , Fluorescence , Glutathione Peroxidase/metabolism , Guanidine/pharmacology , Humans , Hydrogen Bonding , Hydrogen Peroxide/metabolism , Models, Molecular , Peroxiredoxin VI/chemistry , Protein Denaturation/drug effects , Protein Structure, Secondary , Rats , Thermodynamics
6.
Antioxidants (Basel) ; 8(2)2019 Feb 02.
Article in English | MEDLINE | ID: mdl-30717364

ABSTRACT

Peroxiredoxins(Prdx), the family of non-selenium glutathione peroxidases, are important antioxidant enzymes that defend our system from the toxic reactive oxygen species (ROS). They are thiol-based peroxidases that utilize self-oxidation of their peroxidatic cysteine (Cp) group to reduce peroxides and peroxidized biomolecules. However, because of its high affinity for hydrogen peroxide this peroxidatic cysteine moiety is extremely susceptible to hyperoxidation, forming peroxidase inactive sulfinic acid (Cys-SO2H) and sulfonic acid (Cys-SO3H) derivatives. With the exception of peroxiredoxin 6 (Prdx6), hyperoxidized sulfinic forms of Prdx can be reversed to restore peroxidase activity by the ATP-dependent enzyme sulfiredoxin. Interestingly, hyperoxidized Prdx6 protein seems to have physiological significance as hyperoxidation has been reported to dramatically upregulate its calcium independent phospholipase A2 activity. Using biochemical studies and molecular dynamic (MD) simulation, we investigated the roles of thermodynamic, structural and internal flexibility of Prdx6 to comprehend the structural alteration of the protein in the oxidized state. We observed the loosening of the hydrophobic core of the enzyme in its secondary and tertiary structures. These changes do not affect the internal dynamics of the protein (as indicated by root-mean-square deviation, RMSD and root mean square fluctuation, RMSF plots). Native-PAGE and dynamic light scattering experiments revealed the formation of higher oligomers of Prdx6 under hyperoxidation. Our study demonstrates that post translational modification (like hyperoxidation) in Prdx6 can result in major alterations of its multimeric status.

7.
Biochim Biophys Acta ; 1850(9): 1822-31, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25960386

ABSTRACT

BACKGROUND: Cellular interior is known to be densely crowded due to the presence of soluble and insoluble macromolecules, which altogether occupy ~40% of the total cellular volume. This results in altered biological properties of macromolecules. SCOPE OF REVIEW: Macromolecular crowding is observed to have both positive and negative effects on protein folding, structure, stability and function. Significant data has been accumulated so far on both the aspects. However, most of the review articles so far have focused on the positive aspect of macromolecular crowding and not much attention has been paid on the deleterious aspect of crowding on macromolecules. In order to have a complete knowledge of the effect of macromolecular crowding on proteins and enzymes, it is important to look into both the aspects of crowding to determine its precise role under physiological conditions. To fill the gap in the understanding of the effect of macromolecular crowding on proteins and enzymes, this review article focuses on the deleterious influence of crowding on macromolecules. MAJOR CONCLUSIONS: Macromolecular crowding is not always good but also has several deleterious effects on various macromolecular properties. Taken together, the properties of biological macromolecules in vivo appears to be finely regulated by the nature and level of the intracellular crowdedness in order to perform their biological functions appropriately. GENERAL SIGNIFICANCE: The information provided here gives an understanding of the role played by the nature and level of cellular crowdedness in intensifying and/or alleviating the burden of various proteopathies.


Subject(s)
Macromolecular Substances/chemistry , Genetic Diseases, Inborn/etiology , Neurodegenerative Diseases/etiology , Protein Aggregates , Protein Conformation , Protein Folding , Protein Stability , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...