Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ind Eng Chem Res ; 61(49): 17854-17865, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36536930

ABSTRACT

Six ceria supports synthesized by various synthesis methodologies were used to deposit cobalt oxide. The catalysts were thoroughly characterized, and their catalytic activity for complete methane oxidation was studied. The supports synthesized by direct calcination and precipitation with ammonia exhibited the best textural and structural properties as well as the highest degree of oxidation. The remaining supports presented poorer textural properties to be employed as catalytic supports. The cobalt deposited over the first two supports presented a good dispersion at the external surface, which induced a significant redox effect that increased the number of Co3+ ions on their surface. Consequently, the presence of highly active lattice oxygen species on the surface of these catalysts was favored. Additionally, the optimal active catalyst (Co-DC) revealed a significant resistance to water vapor inhibition, owing to the high hydrophobicity of the ceria support.

2.
Materials (Basel) ; 12(19)2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31569775

ABSTRACT

The present work addresses the influence of the support on the catalytic behavior of Co3O4-based catalysts in the combustion of lean methane present in the exhaust gases from natural gas vehicular engines. Three different supports were selected, namely γ-alumina, magnesia and ceria and the corresponding catalysts were loaded with a nominal cobalt content of 30 wt. %. The samples were characterized by N2 physisorption, wavelength dispersive X-ray fluorescence (WDXRF), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction with hydrogen and methane. The performance was negatively influenced by a strong cobalt-support interaction, which in turn reduced the amount of active cobalt species as Co3O4. Hence, when alumina or magnesia supports were employed, the formation of CoAl2O4 or Co-Mg mixed oxides, respectively, with a low reducibility was evident, while ceria showed a lower affinity for deposited cobalt and this remained essentially as Co3O4. Furthermore, the observed partial insertion of Ce into the Co3O4 lattice played a beneficial role in promoting the oxygen mobility at low temperatures and consequently the catalytic activity. This catalyst also exhibited a good thermal stability while the presence of water vapor in the feedstream induced a partial inhibition, which was found to be completely reversible.

3.
Sci Total Environ ; 685: 410-418, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31176226

ABSTRACT

Polar, low molecular weight pesticides such as metaldehyde are challenging and costly to remove from drinking water using conventional treatment methods. Although biological treatments can be effective at treating micropollutants, through biodegradation and sorption processes, only some operational biofilters have shown the ability to remove metaldehyde. As sorption plays a minor role for such polar organic micropollutants, biodegradation is therefore likely to be the main removal pathway. In this work, the biodegradation of metaldehyde was monitored, and assessed, in an operational slow sand filter. Long-term data showed that metaldehyde degradation improved when inlet concentrations increased. A comparison of inactive and active sand batch reactors showed that metaldehyde removal happened mainly through biodegradation and that the removal rates were greater after the biofilm was acclimated through exposure to high metaldehyde concentrations. This suggested that metaldehyde removal was reliant on enrichment and that the process could be engineered to decrease treatment times (from days to hours). Through-flow experiments using fluidised bed reactors, showed the same behaviour following metaldehyde acclimation. A 40% increase in metaldehyde removal was observed in acclimated compared with non-acclimated columns. This increase was sustained for >40 days, achieving an average of 80% removal and compliance (<0.1 µâ€¯L-1) for >20 days. An initial microbial analysis of the acclimated and non-acclimated biofilm from the same filter materials, showed that the microbial community in acclimated sand was significantly different. This work presents a novel conceptual template for a faster, chemical free, low cost, biological treatment of metaldehyde and other polar pollutants in drinking water. In addition, this is the first study to report kinetics of metaldehyde degradation in an active microbial biofilm at a WTW.


Subject(s)
Acetaldehyde/analogs & derivatives , Bioreactors , Water Pollutants, Chemical/analysis , Water Purification/methods , Acetaldehyde/analysis , Biodegradation, Environmental , Drinking Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...