Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Neuroinflammation ; 15(1): 28, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-29382344

ABSTRACT

BACKGROUND: Microglia function is essential to maintain the brain homeostasis. Evidence shows that aged microglia are primed and show exaggerated response to acute inflammatory challenge. Systemic inflammation signals to the brain inducing changes that impact cognitive function. However, the mechanisms involved in age-related cognitive decline associated to episodic systemic inflammation are not completely understood. The aim of this study was to identify neuropathological features associated to age-related cognitive decline in a mouse model of episodic systemic inflammation. METHODS: Young and aged Swiss mice were injected with low doses of LPS once a week for 6 weeks to induce episodic systemic inflammation. Sickness behavior, inflammatory markers, and neuroinflammation were assessed in different phases of systemic inflammation in young and aged mice. Behavior was evaluated long term after episodic systemic inflammation by open field, forced swimming, object recognition, and water maze tests. RESULTS: Episodic systemic inflammation induced systemic inflammation and sickness behavior mainly in aged mice. Systemic inflammation induced depressive-like behavior in both young and aged mice. Memory and learning were significantly affected in aged mice that presented lower exploratory activity and deficits in episodic and spatial memories, compared to aged controls and to young after episodic systemic inflammation. Systemic inflammation induced acute microglia activation in young mice that returned to base levels long term after episodic systemic inflammation. Aged mice presented dystrophic microglia in the hippocampus and entorhinal cortex at basal level and did not change morphology in the acute response to SI. Regardless of their dystrophic microglia, aged mice produced higher levels of pro-inflammatory (IL-1ß and IL-6) as well as pro-resolution (IL-10 and IL-4) cytokines in the brain. Also, higher levels of Nox2 expression, oxidized proteins and lower antioxidant defenses were found in the aged brains compared to the young after episodic systemic inflammation. CONCLUSIONS: Our data show that aged mice have increased susceptibility to episodic systemic inflammation. Aged mice that showed cognitive impairments also presented higher oxidative stress and abnormal production of cytokines in their brains. These results indicate that a neuroinflammation and oxidative stress are pathophysiological mechanisms of age-related cognitive impairments.


Subject(s)
Aging/metabolism , Brain/metabolism , Cognitive Dysfunction/metabolism , Disease Models, Animal , Inflammation Mediators/metabolism , Oxidative Stress/physiology , Aging/drug effects , Aging/pathology , Animals , Brain/drug effects , Brain/pathology , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/pathology , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/toxicity , Male , Mice
2.
Brain Behav Immun ; 60: 293-303, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27833044

ABSTRACT

Acute brain dysfunction is a frequent condition in sepsis patients and is associated with increased mortality and long-term neurocognitive consequences. Impaired memory and executive function are common findings in sepsis survivors. Although neuroinflammation and blood-brain barrier dysfunction have been associated with acute brain dysfunction and its consequences, no specific treatments are available that prevent cognitive impairment after sepsis. Experimental sepsis was induced in Swiss Webster mice by intraperitoneal injection of cecal material (5mg/kg, 500µL). Control groups (n=5/group each experiment) received 500µL of saline. Support therapy recover (saline 0.9%, 1mL and imipenem 30mg/kg) were applied (6, 24 and 48h post injection, n=5-10/group, each experiment), together or not with additive orally treatment with statins (atorvastatin/simvastatin 20mg/kg b.w.). Survival rate was monitored at 6, 24 and 48h. In a setting of experiments, animals were euthanized at 6 and 24h after induction for biochemical, immunohistochemistry and intravital analysis. Statins did not prevented mortality in septic mice, however survivors presented lower clinical score. At another setting of experiments, after 15days, mice survivors from fecal supernatant peritoneal sepsis presented cognitive dysfunction for contextual hippocampal and aversive amygdala-dependent memories, which was prevented by atorvastatin/simvastatin treatment. Systemic and brain tissue levels of proinflammatory cytokines/chemokines and activation of microglial were lower in septic mice treated with statins. Brain lipid peroxidation and myeloperoxidase levels were also reduced by statins treatment. Intravital examination of the brain vessels of septic animals revealed decreased functional capillary density and increased rolling and adhesion of leukocytes, and blood flow impairment, which were reversed by treatment with statins. In addition, treatment with statins restored the cholinergic vasodilator response due to sepsis. Taken together, these data demonstrated that statins reverse microvascular dysfunction and reduce neuroinflammation during sepsis, preventing the development of long-term cognitive decline.


Subject(s)
Cognitive Dysfunction/prevention & control , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Leukocytes/drug effects , Microcirculation/drug effects , Sepsis/drug therapy , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Cognitive Dysfunction/drug therapy , Cytokines/metabolism , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Leukocytes/metabolism , Male , Mice , Sepsis/complications
3.
Mol Neurobiol ; 54(7): 5526-5533, 2017 09.
Article in English | MEDLINE | ID: mdl-27631877

ABSTRACT

Previous studies have shown that in the early phase of sepsis, the plasma concentration of arginine vasopressin (AVP) is increased, but in the late phase, its levels remain inadequately low, despite of persistent hypotension. One hypothesis suggested for this relative deficiency is apoptosis of vasopressinergic neurons. Here, we investigated apoptosis pathways in the hypothalamus during sepsis, as well as mechanisms underlying this process. Male Wistar rats were submitted to sepsis by cecal ligation and puncture (CLP) or nonmanipulated (naive) as control. After 6 and 24 h, the animals were decapitated and brain and blood were collected to assess hypothalamic apoptotic markers, IFN-γ plasma levels, and evidence for breakdown of the blood-brain barrier (BBB). Sepsis caused a decrease in mitochondrial antiapoptotic proteins (Bcl-2, Bcl-xL) in the hypothalamus, but had no effect on markers of cell death mediated by death receptors or immune cells. In the supraoptic nuclei of these animals, microglia morphology was consistent with activation, associated with an increase in plasma IFN-γ. A transitory breakdown of BBB in the hypothalamus was seen at 6 h following CLP. The results indicate that the intrinsic but not extrinsic apoptosis pathway is involved in the cell death observed in vasopressinergic neurons, and that this condition is temporally associated with microglial activation and BBB leaking.


Subject(s)
Apoptosis/physiology , Arginine Vasopressin/metabolism , Hypothalamus/metabolism , Neurons/metabolism , Sepsis/metabolism , Animals , Blood-Brain Barrier/metabolism , Hypothalamus/drug effects , Male , Nitric Oxide/metabolism , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL