Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 124(21): 213901, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32530673

ABSTRACT

Multiplication and division of the orbital angular momentum (OAM) of light are important functions in the exploitation of the OAM mode space for such purposes as high-dimensional quantum information encoding and mode division multiplexed optical communications. These operations are possible with optical transformations that reshape optical wave fronts according to azimuthal scaling. However, schemes proposed thus far have been limited to OAM multiplication by integer factors and require complex beam-copying or multitransformation diffraction stages; a result of the limited phase excursion 2πℓ around the annulus of an OAM state exp(iℓθ). Based on the key idea that the phase excursion along spirals in the transverse plane of a vortex is theoretically unlimited, we propose and experimentally demonstrate a simple yet effective scheme using an azimuth-scaling spiral transformation that can accomplish both OAM multiplication and division by arbitrary rational factors in a single stage.

2.
Phys Rev Lett ; 120(19): 193904, 2018 May 11.
Article in English | MEDLINE | ID: mdl-29799240

ABSTRACT

Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.

3.
J Opt Soc Am A Opt Image Sci Vis ; 32(5): 867-76, 2015 May 01.
Article in English | MEDLINE | ID: mdl-26366911

ABSTRACT

Chirped Bessel waves are introduced as stable (nondiffracting) solutions of the paraxial wave equation in optical antiguides with a power-law radial variation in their index of refraction. Through numerical simulations, we investigate the propagation of apodized (finite-energy) versions of such waves, with or without vorticity, in antiguides with practical parameters. The new waves exhibit a remarkable resistance against the defocusing effect of the unstable index potentials, outperforming standard Gaussians with the same full width at half-maximum. The chirped profile persists even under conditions of eccentric launching or antiguide bending and is also capable of self-healing like standard diffraction-free beams in free space.

4.
Sci Rep ; 5: 12086, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26166011

ABSTRACT

For decades, singular beams carrying angular momentum have been a topic of considerable interest. Their intriguing applications are ubiquitous in a variety of fields, ranging from optical manipulation to photon entanglement, and from microscopy and coronagraphy to free-space communications, detection of rotating black holes, and even relativistic electrons and strong-field physics. In most applications, however, singular beams travel naturally along a straight line, expanding during linear propagation or breaking up in nonlinear media. Here, we design and demonstrate diffraction-resisting singular beams that travel along arbitrary trajectories in space. These curved beams not only maintain an invariant dark "hole" in the center but also preserve their angular momentum, exhibiting combined features of optical vortex, Bessel, and Airy beams. Furthermore, we observe three-dimensional spiraling of microparticles driven by such fine-shaped dynamical beams. Our findings may open up new avenues for shaped light in various applications.

5.
Opt Lett ; 39(15): 4611-4, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25078241

ABSTRACT

We theoretically propose a temporal cloaking scheme based on accelerating wave packets. A part of a monochromatic light wave is endowed with a discontinuous nonlinear frequency chirp, so that two opposite accelerating caustics are created in space-time as the different frequency components propagate in the presence of dispersion. The two caustics open a biconvex time gap that contains negligible optical energy, thus concealing the enclosed events. In contrast to previous temporal cloaking schemes, where light propagates successively through two different media with opposite dispersions, accelerating wave packets open and close the cloaked time window continuously in a single dispersive medium. In addition, biconvex time gaps can be tailored into arbitrary shapes and offer a larger suppression of intensity compared with their rhombic counterparts.

6.
Opt Lett ; 38(4): 498-500, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23455115

ABSTRACT

We experimentally demonstrate self-accelerating Bessel-like optical beams propagating along arbitrary trajectories in free space. With computer-generated holography, such beams are designed to follow different controllable trajectories while their main lobe transverse profiles remain nearly invariant and symmetric. Examples include parabolic, snake-like, hyperbolic, hyperbolic secant, and even three-dimensional spiraling trajectories. The self-healing property of such beams is also demonstrated. This new class of optical beams can be considered as a hybrid between accelerating and nonaccelerating nondiffracting beams that may find a variety of applications.

7.
Opt Lett ; 37(23): 5003-5, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23202118

ABSTRACT

A method is proposed for generating Bessel-like optical beams with arbitrary trajectories in free space. The method involves phase-modulating an optical wavefront so that conical bundles of rays are formed whose apexes write a continuous focal curve with pre-specified shape. These ray cones have circular bases on the input plane; thus their interference results in a Bessel-like transverse field profile that propagates along the specified trajectory with a remarkably invariant main lobe. Such beams can be useful as hybrids between non-accelerating and accelerating optical waves that share diffraction-resisting and self-healing properties.

8.
J Opt Soc Am A Opt Image Sci Vis ; 29(6): 861-8, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22673414

ABSTRACT

Reflection and refraction of a finite-power Airy beam at the interface between two dielectric media are investigated analytically and numerically. The formulation takes into account the paraxial nature of the optical beams to derive convenient field evolution equations in coordinate frames moving along Snell's refraction and reflection axes. Through numerical simulations, the self-accelerating dynamics of the Airy-like refracted and reflected beams are observed. Of special interest are the cases of critical incidence at Brewster and total-internal-reflection (TIR) angles. In the former case, we find that the reflected beam achieves self-healing, despite the severe suppression of a part of its spectrum, while, in the latter case, the beam remains nearly unaffected except for the Goos-Hänchen shift. The self-accelerating quality persists even if the beam is trapped by multiple TIRs inside a dielectric film. The grazing incidence of an Airy beam at the interface between two media with close refractive indices is also investigated, revealing that the interface can act as a filter depending on the beam scale and tilt. We finally consider reverse refraction and perfect imaging of an Airy beam into a left-handed medium.

9.
Opt Lett ; 37(7): 1277-9, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22466220

ABSTRACT

We study curved trajectory dynamics and design in discrete array settings. We find that beams with power law phases produce curved caustics associated with the fold and cusp type catastrophes. A parabolic phase produces a focus that suffers from spherical aberrations. More important, we find that by designing the initial phase or wavefront of the beam we can construct trajectories with pure power law caustics as well as aberration-free focusing of discrete waves.

10.
Opt Lett ; 36(18): 3675-7, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21931429

ABSTRACT

We demonstrate analytically and experimentally that a circular abruptly autofocusing (AAF) Airy beam can be generated by Fourier-transforming an appropriately apodized Bessel beam whose radial oscillations are chirped by a cubic phase term. Depending on the relation between the chirp rate and the focal distance of the Fourier-transforming lens, it is possible to generate AAF beams with one or two foci, the latter case leading to the formation of an elegant paraboloid optical bottle.

11.
J Opt Soc Am A Opt Image Sci Vis ; 28(6): 962-9, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21643379

ABSTRACT

Traveling waves in two coupled parallel infinite linear point-scatterer arrays are studied analytically for the first time to our knowledge. The two arrays are considered to be generally offset in the axial direction. It is found that slow quasi-even/odd supermodes are supported, as a result of the coupling-induced splitting of the modes of the single array, in direct analogy to standard optical waveguide couplers. Exactly even/odd supermodes are supported when the axial offset is zero. Mode splitting, dispersion curves, and coupling length are numerically investigated versus the inter-element spacing, the inter-array distance, and the axial offset. Potential applications of the concept are in directional optical couplers made of metallic or dielectric nanoparticle chains.

12.
Opt Lett ; 36(10): 1890-2, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21593925

ABSTRACT

We introduce a new family of (2+1)D light beams with pre-engineered abruptly autofocusing properties. These beams have a circularly symmetric input profile that develops outward of a dark disk and oscillates radially as a sublinear-chirp signal, creating a series of concentric intensity rings with gradually decreasing width. The light rays involved in this process form a caustic surface of revolution that bends toward the beam axis at an acceleration rate that is determined by the radial chirp itself. The collapse of the caustic on the axis leads to a large intensity buildup right before the intended focus. This ray-optics interpretation provides valuable insight into the dynamics of abruptly autofocusing waves.

13.
J Opt Soc Am A Opt Image Sci Vis ; 27(1): 85-94, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20035307

ABSTRACT

The scattering of a surface plasmon polariton (SPP) by a rectangular dielectric channel discontinuity is analyzed through a rigorous magnetic field integral equation method. The scattering phenomenon is formulated by means of the magnetic-type scalar integral equation, which is subsequently treated through an entire-domain Galerkin method of moments (MoM), based on a Fourier-series plane wave expansion of the magnetic field inside the discontinuity. The use of Green's function Fourier transform allows all integrations over the area and along the boundary of the discontinuity to be performed analytically, resulting in a MoM matrix with entries that are expressed as spectral integrals of closed-form expressions. Complex analysis techniques, such as Cauchy's residue theorem and the saddle-point method, are applied to obtain the amplitudes of the transmitted and reflected SPP modes and the radiated field pattern. Through numerical results, we examine the wavelength selectivity of transmission and reflection against the channel dimensions as well as the sensitivity to changes in the refractive index of the discontinuity, which is useful for sensing applications.

14.
J Opt Soc Am A Opt Image Sci Vis ; 26(12): 2623-33, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19956333

ABSTRACT

A rigorous integral equation (IE) analysis of the interaction between a surface plasmon polariton (SPP) and a circular dielectric cavity embedded in a metal half-space is presented. The device is addressed as the plasmonic counterpart of the established integrated optics filter comprising a whispering gallery (WG) resonator coupled to a waveguide. The mathematical formulation is that of a transverse magnetic scattering problem. Using a magnetic-type Green's function of the two-layer medium with boundary conditions that cancel the line integral contributions along the interface, an IE for the magnetic field inside the cavity is obtained. The IE is treated through an entire-domain method of moments (MoM) with cylindrical-harmonic basis functions. The entries of the MoM matrix are determined analytically by utilizing the inverse Fourier transform of Green's function and the Jacobi-Anger formula for interchanging between plane and cylindrical waves. Complex analysis techniques are applied to determine the transmitted, reflected, and radiated field quantities in series forms. The numerical results show that the scattered SPPs' spectra exhibit pronounced wavelength selectivity that is related to the excitation of WG-like cavity modes. It seems feasible to exploit the device as a bandstop or reflective filter or even as an efficient radiating element. In addition, the dependence of transmission on the cavity refractive index endows this structure with a sensing functionality.

15.
J Opt Soc Am A Opt Image Sci Vis ; 25(12): 3043-50, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19037395

ABSTRACT

The infinite square lattice of coupled microring optical resonators is studied for what we belive to be the first time. Using the standard matrix formalism and the classical Bloch's theorem for propagation in periodic optical media, the dispersion equation and the amplitudes of propagating Bloch modes are derived analytically. It is found that the dispersion equation omega(kx,ky) of this 2D microring array is expressed as the sum of two independent dispersion equations of the 1D microring array with wavenumbers kx and ky. As a result, the width of the passband is twice that of a microring coupled-resonator optical waveguide and there are no stop bands for an interresonator power coupling ratio greater than 1/2. The evanescent modes that are important to the analysis of lattices with interrupted periodicity are also studied. The reported analysis is the prerequisite to the future study of superresonators consisting of large finite microring arrays.

16.
Appl Opt ; 46(31): 7730-8, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17973017

ABSTRACT

The resonant properties of a closed and symmetric cyclic array of N coupled microring resonators (coupled-microring resonator regular N-gon) are for the first time determined analytically by applying the transfer matrix approach and Floquet theorem for periodic propagation in cylindrically symmetric structures. By solving the corresponding eigenvalue problem with the field amplitudes in the rings as eigenvectors, it is shown that, for even or odd N, this photonic molecule possesses 1 + N/2 or 1+N resonant frequencies, respectively. The condition for resonances is found to be identical to the familiar dispersion equation of the infinite coupled-microring resonator waveguide with a discrete wave vector. This result reveals the so far latent connection between the two optical structures and is based on the fact that, for a regular polygon, the field transfer matrix over two successive rings is independent of the polygon vertex angle. The properties of the resonant modes are discussed in detail using the illustration of Brillouin band diagrams. Finally, the practical application of a channel-dropping filter based on polygons with an even number of rings is also analyzed.

17.
J Opt Soc Am A Opt Image Sci Vis ; 23(12): 3054-62, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17106461

ABSTRACT

The scattering by a linear chain of spherical dielectric inclusions, embedded along the axis of an optical fiber, is analyzed using a rigorous integral equation formulation, based on the dyadic Green's function theory. The coupled electric field integral equations are solved by applying the Galerkin technique with Mie-type expansion of the field inside the spheres in terms of spherical waves. The analysis extends the previously studied case of a single spherical inhomogeneity inside a fiber to the multisphere-scattering case, by utilizing the classic translational addition theorems for spherical waves in order to analytically extract the direct-intersphere-coupling coefficients. Results for the transmitted and reflected power, on incidence of the fundamental HE(11) mode, are presented for several cases.

18.
J Opt Soc Am A Opt Image Sci Vis ; 23(8): 1884-8, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16835645

ABSTRACT

The transformation of radially traveling cylindrical waves between two cylindrical coordinate systems with skew (nonparallel) axes is derived for the first time to our knowledge. The analytical procedure is based on the complex integral representation of the Hankel function and appropriate contour deformation and change of variables to obtain a final Fourier transform expression of the cylindrical wave in the new system. Scalar and vector waves are considered. This new result is a powerful tool for the rigorous analysis of scattering and coupling in nonparallel optical fiber configurations.

19.
J Opt Soc Am A Opt Image Sci Vis ; 23(2): 461-7, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16477850

ABSTRACT

A rigorous integral equation analysis of the coupling between a fiber waveguide and an adjacent spherical particle is developed. The solution is obtained by applying the entire-domain Galerkin technique, based on Mie-type spherical wave expansion of the field in the sphere and the use of dyadic Green's function of the fiber waveguide. The conversion between cylindrical and spherical wave functions is done through classic analytical formulas. The analysis is applied to numerically investigate transmission through silica wires of subwavelength diameter in the presence of particles of comparable size. The results show the possibility of sensing microparticles through the reduction of transmitted power, which is maximum for certain critical values of the fiber diameter.

20.
J Opt Soc Am A Opt Image Sci Vis ; 21(5): 839-46, 2004 May.
Article in English | MEDLINE | ID: mdl-15139438

ABSTRACT

The excitation of a whispering gallery resonator by a surface wave guided in a dielectric slab is analyzed with a rigorous volume-integral-equation approach. The analysis is based on the Green's function concept and the application of the entire-domain Galerkin technique through expansion of the electric field in the resonator in terms of cylindrical wave functions. The algorithm developed yields highly accurate results for the transmission and reflection coefficients in the waveguide. The radiated far field is computed, and the effect of the excitation of a whispering gallery mode on the radiation pattern is studied.

SELECTION OF CITATIONS
SEARCH DETAIL
...