Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
New Phytol ; 242(6): 2746-2762, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38666352

ABSTRACT

Legume plants develop two types of root postembryonic organs, lateral roots and symbiotic nodules, using shared regulatory components. The module composed by the microRNA390, the Trans-Acting SIRNA3 (TAS3) RNA and the Auxin Response Factors (ARF)2, ARF3, and ARF4 (miR390/TAS3/ARFs) mediates the control of both lateral roots and symbiotic nodules in legumes. Here, a transcriptomic approach identified a member of the Lateral Organ Boundaries Domain (LBD) family of transcription factors in Medicago truncatula, designated MtLBD17/29a, which is regulated by the miR390/TAS3/ARFs module. ChIP-PCR experiments evidenced that MtARF2 binds to an Auxin Response Element present in the MtLBD17/29a promoter. MtLBD17/29a is expressed in root meristems, lateral root primordia, and noninfected cells of symbiotic nodules. Knockdown of MtLBD17/29a reduced the length of primary and lateral roots and enhanced lateral root formation, whereas overexpression of MtLBD17/29a produced the opposite phenotype. Interestingly, both knockdown and overexpression of MtLBD17/29a reduced nodule number and infection events and impaired the induction of the symbiotic genes Nodulation Signaling Pathway (NSP) 1 and 2. Our results demonstrate that MtLBD17/29a is regulated by the miR390/TAS3/ARFs module and a direct target of MtARF2, revealing a new lateral root regulatory hub recruited by legumes to act in the root nodule symbiotic program.


Subject(s)
Gene Expression Regulation, Plant , Indoleacetic Acids , Medicago truncatula , Plant Proteins , Plant Root Nodulation , Plant Roots , Transcription Factors , Medicago truncatula/genetics , Medicago truncatula/microbiology , Medicago truncatula/metabolism , Medicago truncatula/growth & development , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Root Nodulation/genetics , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Indoleacetic Acids/metabolism , Promoter Regions, Genetic/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Knockdown Techniques , Symbiosis/genetics , Root Nodules, Plant/metabolism , Root Nodules, Plant/genetics , Root Nodules, Plant/growth & development
2.
Genome Biol ; 23(1): 181, 2022 08 29.
Article in English | MEDLINE | ID: mdl-36038910

ABSTRACT

BACKGROUND: RNA-DNA hybrid (R-loop)-associated long noncoding RNAs (lncRNAs), including the Arabidopsis lncRNA AUXIN-REGULATED PROMOTER LOOP (APOLO), are emerging as important regulators of three-dimensional chromatin conformation and gene transcriptional activity. RESULTS: Here, we show that in addition to the PRC1-component LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), APOLO interacts with the methylcytosine-binding protein VARIANT IN METHYLATION 1 (VIM1), a conserved homolog of the mammalian DNA methylation regulator UBIQUITIN-LIKE CONTAINING PHD AND RING FINGER DOMAINS 1 (UHRF1). The APOLO-VIM1-LHP1 complex directly regulates the transcription of the auxin biosynthesis gene YUCCA2 by dynamically determining DNA methylation and H3K27me3 deposition over its promoter during the plant thermomorphogenic response. Strikingly, we demonstrate that the lncRNA UHRF1 Protein Associated Transcript (UPAT), a direct interactor of UHRF1 in humans, can be recognized by VIM1 and LHP1 in plant cells, despite the lack of sequence homology between UPAT and APOLO. In addition, we show that increased levels of APOLO or UPAT hamper VIM1 and LHP1 binding to YUCCA2 promoter and globally alter the Arabidopsis transcriptome in a similar manner. CONCLUSIONS: Collectively, our results uncover a new mechanism in which a plant lncRNA coordinates Polycomb action and DNA methylation through the interaction with VIM1, and indicates that evolutionary unrelated lncRNAs with potentially conserved structures may exert similar functions by interacting with homolog partners.


Subject(s)
Arabidopsis Proteins , Arabidopsis , RNA, Long Noncoding , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , DNA/metabolism , DNA Methylation , Histones/metabolism , Humans , Indoleacetic Acids/metabolism , Plants/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
3.
Mol Plant ; 15(5): 840-856, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35150931

ABSTRACT

Clustered organization of biosynthetic non-homologous genes is emerging as a characteristic feature of plant genomes. The co-regulation of clustered genes seems to largely depend on epigenetic reprogramming and three-dimensional chromatin conformation. In this study, we identified the long non-coding RNA (lncRNA) MARneral Silencing (MARS), localized inside the Arabidopsis marneral cluster, which controls the local epigenetic activation of its surrounding region in response to abscisic acid (ABA). MARS modulates the POLYCOMB REPRESSIVE COMPLEX 1 (PRC1) component LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) binding throughout the cluster in a dose-dependent manner, determining H3K27me3 deposition and chromatin condensation. In response to ABA, MARS decoys LHP1 away from the cluster and promotes the formation of a chromatin loop bringing together the MARNERAL SYNTHASE 1 (MRN1) locus and a distal ABA-responsive enhancer. The enrichment of co-regulated lncRNAs in clustered metabolic genes in Arabidopsis suggests that the acquisition of novel non-coding transcriptional units may constitute an additional regulatory layer driving the evolution of biosynthetic pathways.


Subject(s)
Arabidopsis , RNA, Long Noncoding , Abscisic Acid/pharmacology , Arabidopsis/genetics , Chromatin/genetics , Chromobox Protein Homolog 5 , Epigenesis, Genetic , RNA, Long Noncoding/genetics , Triterpenes
4.
Mol Plant ; 14(6): 937-948, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33689931

ABSTRACT

Plant long noncoding RNAs (lncRNAs) have emerged as important regulators of chromatin dynamics, impacting on transcriptional programs leading to different developmental outputs. The lncRNA AUXIN-REGULATED PROMOTER LOOP (APOLO) directly recognizes multiple independent loci across the Arabidopsis genome and modulates their three-dimensional chromatin conformation, leading to transcriptional shifts. Here, we show that APOLO recognizes the locus encoding the root hair (RH) master regulator ROOT HAIR DEFECTIVE 6 (RHD6) and controls RHD6 transcriptional activity, leading to cold-enhanced RH elongation through the consequent activation of the transcription factor gene RHD6-like RSL4. Furthermore, we demonstrate that APOLO interacts with the transcription factor WRKY42 and modulates its binding to the RHD6 promoter. WRKY42 is required for the activation of RHD6 by low temperatures and WRKY42 deregulation impairs cold-induced RH expansion. Collectively, our results indicate that a novel ribonucleoprotein complex with APOLO and WRKY42 forms a regulatory hub to activate RHD6 by shaping its epigenetic environment and integrate signals governing RH growth and development.


Subject(s)
Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Indoleacetic Acids/metabolism , Plant Roots/growth & development , RNA, Long Noncoding/metabolism , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Proliferation/physiology , Chromatin/metabolism , Cold Temperature , Gene Expression Regulation, Plant , Plant Development/genetics , Plant Roots/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Transcription Factors/genetics
5.
Plant Physiol ; 183(3): 1058-1072, 2020 07.
Article in English | MEDLINE | ID: mdl-32404413

ABSTRACT

Root architecture varies widely between species; it even varies between ecotypes of the same species, despite strong conservation of the coding portion of their genomes. By contrast, noncoding RNAs evolve rapidly between ecotypes and may control their differential responses to the environment, since several long noncoding RNAs (lncRNAs) are known to quantitatively regulate gene expression. Roots from ecotypes Columbia and Landsberg erecta of Arabidopsis (Arabidopsis thaliana) respond differently to phosphate starvation. Here, we compared transcriptomes (mRNAs, lncRNAs, and small RNAs) of root tips from these two ecotypes during early phosphate starvation. We identified thousands of lncRNAs that were largely conserved at the DNA level in these ecotypes. In contrast to coding genes, many lncRNAs were specifically transcribed in one ecotype and/or differentially expressed between ecotypes independent of phosphate availability. We further characterized these ecotype-related lncRNAs and studied their link with small interfering RNAs. Our analysis identified 675 lncRNAs differentially expressed between the two ecotypes, including antisense RNAs targeting key regulators of root-growth responses. Misregulation of several lincRNAs showed that at least two ecotype-related lncRNAs regulate primary root growth in ecotype Columbia. RNA-sequencing analysis following deregulation of lncRNA NPC48 revealed a potential link with root growth and transport functions. This exploration of the noncoding transcriptome identified ecotype-specific lncRNA-mediated regulation in root apexes. The noncoding genome may harbor further mechanisms involved in ecotype adaptation of roots to different soil environments.


Subject(s)
Arabidopsis/genetics , Ecotype , Phosphates/deficiency , Plant Roots/anatomy & histology , Plant Roots/genetics , RNA, Long Noncoding/genetics , Stress, Physiological/genetics , Adaptation, Physiological/genetics , Adaptation, Physiological/physiology , Arabidopsis/physiology , Gene Expression Regulation, Plant , Genetic Variation , Plant Roots/physiology , Stress, Physiological/physiology , Transcriptome
6.
EMBO Rep ; 21(5): e48977, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32285620

ABSTRACT

Alternative splicing (AS) is a major source of transcriptome diversity. Long noncoding RNAs (lncRNAs) have emerged as regulators of AS through different molecular mechanisms. In Arabidopsis thaliana, the AS regulators NSRs interact with the ALTERNATIVE SPLICING COMPETITOR (ASCO) lncRNA. Here, we analyze the effect of the knock-down and overexpression of ASCO at the genome-wide level and find a large number of deregulated and differentially spliced genes related to flagellin responses and biotic stress. In agreement, ASCO-silenced plants are more sensitive to flagellin. However, only a minor subset of deregulated genes overlaps with the AS defects of the nsra/b double mutant, suggesting an alternative way of action for ASCO. Using biotin-labeled oligonucleotides for RNA-mediated ribonucleoprotein purification, we show that ASCO binds to the highly conserved spliceosome component PRP8a. ASCO overaccumulation impairs the recognition of specific flagellin-related transcripts by PRP8a. We further show that ASCO also binds to another spliceosome component, SmD1b, indicating that it interacts with multiple splicing factors. Hence, lncRNAs may integrate a dynamic network including spliceosome core proteins, to modulate transcriptome reprogramming in eukaryotes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , RNA, Long Noncoding , Alternative Splicing , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , RNA Splicing Factors/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcriptome
7.
Mol Cell ; 77(5): 1055-1065.e4, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31952990

ABSTRACT

In eukaryotes, three-dimensional genome organization is critical for transcriptional regulation of gene expression. Long noncoding RNAs (lncRNAs) can modulate chromatin conformation of spatially related genomic locations within the nucleus. Here, we show that the lncRNA APOLO (AUXIN-REGULATED PROMOTER LOOP) recognizes multiple distant independent loci in the Arabidopsis thaliana genome. We found that APOLO targets are not spatially associated in the nucleus and that APOLO recognizes its targets by short sequence complementarity and the formation of DNA-RNA duplexes (R-loops). The invasion of APOLO to the target DNA decoys the plant Polycomb Repressive Complex 1 component LHP1, modulating local chromatin 3D conformation. APOLO lncRNA coordinates the expression of distal unrelated auxin-responsive genes during lateral root development in Arabidopsis. Hence, R-loop formation and chromatin protein decoy mediate trans action of lncRNAs on distant loci. VIDEO ABSTRACT.


Subject(s)
Arabidopsis/metabolism , Chromatin Assembly and Disassembly , Chromatin/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism , RNA, Long Noncoding/metabolism , RNA, Plant/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chromatin/genetics , Chromatin Assembly and Disassembly/drug effects , Gene Expression Regulation, Plant/drug effects , Indoleacetic Acids/pharmacology , Models, Genetic , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/genetics , R-Loop Structures , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA, Long Noncoding/genetics , RNA, Plant/genetics , Structure-Activity Relationship , Transcription Factors/genetics , Transcription Factors/metabolism
8.
PLoS One ; 10(10): e0138276, 2015.
Article in English | MEDLINE | ID: mdl-26457678

ABSTRACT

Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression.


Subject(s)
Arabidopsis Proteins/metabolism , Chromatin Assembly and Disassembly , Chromatin/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cytokinins/biosynthesis , Alkyl and Aryl Transferases/metabolism , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Carrier Proteins/metabolism , Cell Cycle , Cell Cycle Proteins , Chromatin/metabolism , DNA, Plant/genetics , Epigenesis, Genetic , Genetic Loci/genetics , Histones/metabolism , Meristem/growth & development
9.
Nucleic Acids Res ; 43(5): 2902-13, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25694514

ABSTRACT

Cytoplasmic degradation of endogenous RNAs is an integral part of RNA quality control (RQC) and often relies on the removal of the 5' cap structure and their subsequent 5' to 3' degradation in cytoplasmic processing (P-)bodies. In parallel, many eukaryotes degrade exogenous and selected endogenous RNAs through post-transcriptional gene silencing (PTGS). In plants, PTGS depends on small interfering (si)RNAs produced after the conversion of single-stranded RNAs to double-stranded RNAs by the cellular RNA-dependent RNA polymerase 6 (RDR6) in cytoplasmic siRNA-bodies. PTGS and RQC compete for transgene-derived RNAs, but it is unknown whether this competition also occurs for endogenous transcripts. We show that the lethality of decapping mutants is suppressed by impairing RDR6 activity. We establish that upon decapping impairment hundreds of endogenous mRNAs give rise to a new class of rqc-siRNAs, that over-accumulate when RQC processes are impaired, a subset of which depending on RDR6 for their production. We observe that P- and siRNA-bodies often are dynamically juxtaposed, potentially allowing for cross-talk of the two machineries. Our results suggest that the decapping of endogenous RNA limits their entry into the PTGS pathway. We anticipate that the rqc-siRNAs identified in decapping mutants represent a subset of a larger ensemble of endogenous siRNAs.


Subject(s)
Arabidopsis Proteins/genetics , RNA Caps/genetics , RNA, Messenger/genetics , RNA, Plant/genetics , RNA, Small Interfering/genetics , RNA-Dependent RNA Polymerase/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Gene Expression Regulation, Plant , Mutation , Oligonucleotide Array Sequence Analysis , Plants, Genetically Modified , RNA Caps/metabolism , RNA Interference , RNA, Messenger/metabolism , RNA, Plant/metabolism , RNA, Small Interfering/metabolism , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , RNA-Dependent RNA Polymerase/metabolism , Transcriptome
10.
Mol Cell ; 55(3): 383-96, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-25018019

ABSTRACT

The eukaryotic epigenome is shaped by the genome topology in three-dimensional space. Dynamic reversible variations in this epigenome structure directly influence the transcriptional responses to developmental cues. Here, we show that the Arabidopsis long intergenic noncoding RNA (lincRNA) APOLO is transcribed by RNA polymerases II and V in response to auxin, a phytohormone controlling numerous facets of plant development. This dual APOLO transcription regulates the formation of a chromatin loop encompassing the promoter of its neighboring gene PID, a key regulator of polar auxin transport. Altering APOLO expression affects chromatin loop formation, whereas RNA-dependent DNA methylation, active DNA demethylation, and Polycomb complexes control loop dynamics. This dynamic chromatin topology determines PID expression patterns. Hence, the dual transcription of a lincRNA influences local chromatin topology and directs dynamic auxin-controlled developmental outputs on neighboring genes. This mechanism likely underscores the adaptive success of plants in diverse environments and may be widespread in eukaryotes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , DNA-Directed RNA Polymerases/metabolism , Indoleacetic Acids/pharmacology , Plant Growth Regulators/pharmacology , RNA Polymerase II/metabolism , RNA, Long Noncoding/genetics , RNA, Plant/genetics , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chromatin Assembly and Disassembly , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Plant , Genome, Plant , Mutation , Polycomb-Group Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
11.
New Phytol ; 202(4): 1197-1211, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24533947

ABSTRACT

In plants, roots are essential for water and nutrient acquisition. MicroRNAs (miRNAs) regulate their target mRNAs by transcript cleavage and/or inhibition of protein translation and are known as major post-transcriptional regulators of various developmental pathways and stress responses. In Arabidopsis thaliana, four isoforms of miR169 are encoded by 14 different genes and target diverse mRNAs, encoding subunits A of the NF-Y transcription factor complex. These miRNA isoforms and their targets have previously been linked to nutrient signalling in plants. By using mimicry constructs against different isoforms of miR169 and miR-resistant versions of NF-YA genes we analysed the role of specific miR169 isoforms in root growth and branching. We identified a regulatory node involving the particular miR169defg isoform and NF-YA2 and NF-YA10 genes that acts in the control of primary root growth. The specific expression of MIM169defg constructs altered specific cell type numbers and dimensions in the root meristem. Preventing miR169defg-regulation of NF-YA2 indirectly affected laterial root initiation. We also showed that the miR169defg isoform affects NF-YA2 transcripts both at mRNA stability and translation levels. We propose that a specific miR169 isoform and the NF-YA2 target control root architecture in Arabidopsis.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , CCAAT-Binding Factor/genetics , Gene Expression Regulation, Plant , MicroRNAs/genetics , Arabidopsis/cytology , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , CCAAT-Binding Factor/metabolism , Gene Expression , Genes, Reporter , Meristem/cytology , Meristem/genetics , Meristem/growth & development , MicroRNAs/metabolism , Phenotype , Plant Roots/cytology , Plant Roots/genetics , Plant Roots/growth & development , Plants, Genetically Modified , RNA Isoforms , RNA, Plant/genetics , RNA, Plant/metabolism
12.
Mech Dev ; 130(1): 70-81, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22504372

ABSTRACT

Marker genes are specifically expressed in a tissue, organ or time of development. Here we used a computational screen to identify marker genes of the root in Arabidopsis thaliana. We mined the existing transcriptome datasets for genes having high expression in roots while being low in all other organs under a wide range of growth conditions. We show that the root-specificity of these genes is conserved in the sister species Arabidopsis lyrata, indicating that their expression pattern is under selective pressure. We delineated the cis-regulatory elements responsible for root-specific expression and validated two third of those in planta as bona fide root-specific regulatory sequences. We identified three motifs over-represented in these sequences, which mutation resulted in alteration of root-specific expression, demonstrating that these motifs are functionally relevant. In addition, the three motifs are also over-represented in the cis-regulatory regions of the A. lyrata orthologs of our root-specific genes, and this despite an overall low degree of sequence conservation of these regions. Our results provide a resource to assess root-identity in the model genus Arabidopsis and shed light on the evolutionary history of gene regulation in plants.


Subject(s)
Conserved Sequence/genetics , Plant Roots/genetics , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid/genetics , Arabidopsis/genetics , Base Sequence , Biological Evolution , Computational Biology , Computer Simulation , Gene Expression Regulation, Plant , Plant Roots/growth & development
13.
New Phytol ; 184(2): 340-352, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19656302

ABSTRACT

*The main steps of nitrogen (N) metabolism were characterized in the developing ear of the two maize (Zea mays) lines F2 and Io, which were previously used to investigate the genetic basis of nitrogen use efficiency (NUE) in relation to yield. *During the grain-filling period, we monitored changes in metabolite content, enzyme activities and steady-state levels of transcripts for marker genes of amino acid synthesis and interconversion in the cob and the kernels. *Under low N fertilization conditions, line Io accumulated glutamine, asparagine and alanine preferentially in the developing kernels, whereas in line F2, glutamine and proline were the predominant amino acids. Quantification of the mRNA-encoding enzymes involved in asparagine, alanine and proline biosynthesis confirmed that the differences observed between the two lines at the physiological level are likely to be attributable to enhanced expression of the cognate genes. *Integrative analysis of physiological and gene expression data indicated that the developing ear of line Io had higher N use and transport capacities than line F2. Thus, in maize there is genetic and environmental control of N metabolism not only in vegetative source organs but also in reproductive sink organs.


Subject(s)
Amino Acids/biosynthesis , Nitrogen/metabolism , Zea mays/metabolism , Amino Acid Sequence , Amino Acids/genetics , Analysis of Variance , Edible Grain/growth & development , Fertilizers , Gene Expression Regulation, Plant , Genes, Plant , RNA, Messenger/metabolism , Sequence Alignment , Zea mays/genetics , Zea mays/growth & development
14.
Plant Cell Physiol ; 49(7): 1056-65, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18508804

ABSTRACT

Adaptation to steady-state low-nutrient availability was investigated by comparing the Wassileskija (WS) accession of Arabidopsis thaliana grown on 2 or 10 mM nitrate. Low nitrogen conditions led to a limited rosette biomass and seed yield. The latter was mainly due to reduced seed number, while seed weight was less affected. However, harvest index was lower in high nitrate compared with limited nitrate conditions. Under nitrogen-limiting conditions, nitrate reductase activity was decreased while glutamine synthetase activity was increased due to a higher accumulation of the cytosolic enzyme. The level of nitrogen remobilization to the seeds was higher under low nitrogen, and the vegetative parts of the plants remaining after seed production stored very low residual nitrogen. Through promoting nitrogen remobilization and recycling pathways, nitrogen limitation modified plant and seed compositions. Rosette leaves contained more sugars and less free amino acids when grown under nitrogen-limiting conditions. Compared with high nitrogen, the levels of proline, asparagine and glutamine were decreased. The seed amino acid composition reflected that of the rosette leaves, thus suggesting that phloem loading for seed filling was poorly selective. The major finding of this report was that together with decreasing biomass and yield, nitrogen limitation triggers large modifications in vegetative products and seed quality.


Subject(s)
Arabidopsis/enzymology , Arabidopsis/metabolism , Nitrogen/deficiency , Amino Acids/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Biomass , Nitrate Reductase/metabolism , Plant Leaves/metabolism , Seeds/metabolism
15.
Plant Physiol ; 147(3): 1437-49, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18467460

ABSTRACT

Five recombinant inbred lines (RILs) of Arabidopsis (Arabidopsis thaliana), previously selected from the Bay-0 x Shahdara RIL population on the basis of differential leaf senescence phenotypes (from early senescing to late senescing) when cultivated under nitrogen (N)-limiting conditions, were analyzed to monitor metabolic markers related to N assimilation and N remobilization pathways. In each RIL, a decrease of total N, free amino acid, and soluble protein contents with leaf aging was observed. In parallel, the expression of markers for N remobilization such as cytosolic glutamine synthetase, glutamate dehydrogenase, and CND41-like protease was increased. This increase occurred earlier and more rapidly in early-senescing lines than in late-senescing lines. We measured the partitioning of (15)N between sink and source leaves during the vegetative stage of development using (15)N tracing and showed that N remobilization from the source leaves to the sink leaves was more efficient in the early-senescing lines. The N remobilization rate was correlated with leaf senescence severity at the vegetative stage. Experiments of (15)N tracing at the reproductive stage showed, however, that the rate of N remobilization from the rosettes to the flowering organs and to the seeds was similar in early- and late-senescing lines. At the reproductive stage, N remobilization efficiency did not depend on senescence phenotypes but was related to the ratio between the biomasses of the sink and the source organs.


Subject(s)
Arabidopsis/metabolism , Nitrogen/metabolism , Plant Leaves/metabolism , Amino Acids/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Biomass , Carbon/metabolism , Chlorophyll/metabolism , Glutamate-Ammonia Ligase/metabolism , Molecular Sequence Data , Nitrogen Isotopes/metabolism , Plant Leaves/growth & development , RNA, Messenger/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Starch/metabolism , Time Factors
16.
Plant Physiol ; 138(2): 898-908, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15923326

ABSTRACT

Comparison of the extent of leaf senescence depending on the genetic background of different recombinant inbred lines (RILs) of Arabidopsis (Arabidopsis thaliana) is described. Five RILs of the Bay-0 x Shahdara population showing differential leaf senescence phenotypes (from early senescing to late senescing) were selected to determine metabolic markers to discriminate Arabidopsis lines on the basis of senescence-dependent changes in metabolism. The proportion of gamma-aminobutyric acid, leucine, isoleucine, aspartate, and glutamate correlated with (1) the age and (2) the senescence phenotype of the RILs. Differences were observed in the glycine/serine ratio even before any senescence symptoms could be detected in the rosettes. This could be used as predictive indicator for plant senescence behavior. Surprisingly, late-senescing lines appeared to mobilize glutamine, asparagine, and sulfate more efficiently than early-senescing lines. The physiological basis of the relationship between leaf senescence and flowering time was analyzed.


Subject(s)
Arabidopsis/physiology , Gene Expression Profiling , Plant Leaves/physiology , Amino Acids/metabolism , Arabidopsis/metabolism , Biomarkers/metabolism , Carbon/metabolism , Chlorophyll/metabolism , Crosses, Genetic , Molecular Sequence Data , Nitrogen/metabolism , Phenotype , Plant Leaves/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...