Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 107(23): 7071-7087, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37755509

ABSTRACT

Nanofiber meshes from electrospun chitosan, highly modified with biotin and arylazides, are well-suited for application as enzyme immobilization matrices. To test this, catalytically active biomolecules were immobilized onto photocrosslinked nanofibrous nonwovens consisting mainly of biotinylated fungal chitosan and a small amount (10 w%) of poly ethylene oxide. In this study, we show that over 10 µg eugenol oxidase per milligram dry polymer matrix can be loaded on UV-crosslinked chitosan nanofibers. We further demonstrate that bound enzyme activity can be fully retained for over 7 days of storage at ambient conditions in aqueous buffer. Samples loaded at maximum enzyme carrying capacity were tested in a custom-made plug-flow reactor system with online UV-VIS spectroscopy for activity determination. High wettability and durability of the hydrophilic chitosan support matrix enabled continuous oxidation of model substrate vanillyl alcohol into vanillin with constant turnover at flow rates of up to 0.24 L/h for over 6 h. This proves the above hypothesis and enables further application of the fibers as stacked microfluidic membranes, biosensors, or structural starting points for affinity crosslinked enzyme gels. KEY POINTS: • Biotinylated chitosan-based nanofibers retain enzymes via mild affinity interactions • Immobilized eugenol oxidase shows high activity and resists continuous washing • Nanofiber matrix material tolerated high flow rates in a continuous-flow setup.


Subject(s)
Chitosan , Nanofibers , Chitosan/chemistry , Nanofibers/chemistry , Eugenol , Enzymes, Immobilized/metabolism , Oxidoreductases
2.
Polymers (Basel) ; 15(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37571099

ABSTRACT

This research focuses on exploring the potential of mycelium as a sustainable alternative to wood or solid foam in pultruded glass fiber-reinforced plastic (GFRP) sandwich profiles. The study evaluates the performance and the environmental sustainability potential of this composite by mechanical tests and life cycle assessment (LCA). Analysis and comparison of pultruded sandwich profiles with mycelium, polyurethane (PUR) foam and chipboard demonstrate that mycelium is competitive in terms of its performance and environmental impact. The LCA indicates that 88% of greenhouse gas emissions are attributed to mycelium production, with the heat pressing (laboratory scale) being the main culprit. When pultruded profiles with mycelium cores of densities 350 and 550 kg/m³ are produced using an oil-heated lab press, a global warming potential (GWP) of 5.74 and 9.10 kg CO2-eq. per functional unit was calculated, respectively. When using an electrically heated press, the GWP decreases to 1.50 and 1.78 kg CO2-eq. Compared to PUR foam, a reduction of 23% in GWP is possible. In order to leverage this potential, the material performance and the reproducibility of the properties must be further increased. Additionally, an adjustment of the manufacturing process with in situ mycelium deactivation during pultrusion could further reduce the energy consumption.

3.
Polymers (Basel) ; 13(16)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34451241

ABSTRACT

An optimization of the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and hydroxy benzotriazole mediated conjugation of the polysaccharide chitosan with functional carboxylic acids was shown. Optimal parameters that enable resource-efficient synthesis of highly functionalized chitosan were identified. In particular, use of only catalytic instead of stoichiometric amounts of hydroxy benzotriazole and tight control of pH in reaction mixture resulted in highly efficient incorporation of the desired moieties as side chains in chitosan. As a result, the model reactant 4-azidobenzoic acid was incorporated resulting in a degree of substitution of over 30% with very high coupling efficacy of up to 90%. Similar results were obtained with other carboxylic acids such as methacrylic acid, 3-(2-furyl) propionic acid and 3-maleimido propionic acid, highlighting the broad applicability of our findings for the functionalization of chitosan.

SELECTION OF CITATIONS
SEARCH DETAIL
...