Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 20(16): 3464-3472, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38573072

ABSTRACT

Pancreatic ß-cells regulate glucose homeostasis through glucose-stimulated insulin secretion, which is hindered in type-2 diabetes. Transport of the insulin vesicles is expected to be affected by changes in the viscoelastic and transport properties of the cytoplasm. These are evaluated in situ through particle-tracking measurements using a rat insulinoma ß-cell line. The use of inert probes assists in decoupling the material properties of the cytoplasm from the active transport through cellular processes. The effect of glucose-stimulated insulin secretion is examined, and the subsequent remodeling of the cytoskeleton, at constant effects of cell activity, is shown to result in reduced mobility of the tracer particles. Induction of diabetic-like conditions is identified to alter the mean-squared displacement of the passive particles in the cytoplasm and diminish its reaction to glucose stimulation.


Subject(s)
Insulin-Secreting Cells , Insulin , Insulin-Secreting Cells/metabolism , Animals , Rats , Insulin/metabolism , Glucose/metabolism , Rheology , Insulin Secretion , Cell Line, Tumor , Diabetes Mellitus, Type 2/metabolism
2.
Adv Healthc Mater ; : e2303325, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38134346

ABSTRACT

Microextrusion-based 3D bioprinting into support baths has emerged as a promising technique to pattern soft biomaterials into complex, macroscopic structures. It is hypothesized that interactions between inks and support baths, which are often composed of granular microgels, can be modulated to control the microscopic structure within these macroscopic-printed constructs. Using printed collagen bioinks crosslinked either through physical self-assembly or bioorthogonal covalent chemistry, it is demonstrated that microscopic porosity is introduced into collagen inks printed into microgel support baths but not bulk gel support baths. The overall porosity is governed by the ratio between the ink's shear viscosity and the microgel support bath's zero-shear viscosity. By adjusting the flow rate during extrusion, the ink's shear viscosity is modulated, thus controlling the extent of microscopic porosity independent of the ink composition. For covalently crosslinked collagen, printing into support baths comprised of gelatin microgels (15-50 µm) results in large pores (≈40 µm) that allow human corneal mesenchymal stromal cells (MSCs) to readily spread, while control samples of cast collagen or collagen printed in non-granular support baths do not allow cell spreading. Taken together, these data demonstrate a new method to impart controlled microscale porosity into 3D printed hydrogels using granular microgel support baths.

3.
Polymers (Basel) ; 14(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36501543

ABSTRACT

Polyolefins are semi-crystalline thermoplastic polymers known for their good mechanical properties, low production cost, and chemical resistance. They are amongst the most commonly used plastics, and many polyolefin grades are regarded as engineering polymers. The two main additive manufacturing techniques that can be used to fabricate 3D-printed parts are fused filament fabrication and selective laser sintering. Polyolefins, like polypropylene and polyethylene, can, in principle, be processed with both these techniques. However, the semi-crystalline nature of polyolefins adds complexity to the use of additive manufacturing methods compared to amorphous polymers. First, the crystallization process results in severe shrinkage upon cooling, while the processing temperature and cooling rate affect the mechanical properties and mesoscopic structure of the fabricated parts. In addition, for ultra-high-molecular weight polyolefins, limited chain diffusion is a major obstacle to achieving proper adhesion between adjunct layers. Finally, polyolefins are typically apolar polymers, which reduces the adhesion of the 3D-printed part to the substrate. Notwithstanding these difficulties, it is clear that the successful processing of polyolefins via additive manufacturing techniques would enable the fabrication of high-end engineering products with enormous design flexibility. In addition, additive manufacturing could be utilized for the increased recycling of plastics. This manuscript reviews the work that has been conducted in developing experimental protocols for the additive manufacturing of polyolefins, presenting a comparison between the different approaches with a focus on the use of polyethylene and polypropylene grades. This review is concluded with an outlook for future research to overcome the current challenges that impede the addition of polyolefins to the standard palette of materials processed through additive manufacturing.

4.
Polymers (Basel) ; 12(4)2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32252294

ABSTRACT

The melting behavior of nascent poly(tetrafluoroethylene) (PTFE) was investigated by way of differential scanning calorimetry (DSC). It is well known that the melting temperature of nascent PTFE is about 344 ∘ C, but reduces to 327 ∘ C for once molten material. In this study, the melting temperature of nascent PTFE crystals was found to strongly depend on heating rate, decreasing considerably for slow heating rates. In addition, during isothermal experiments in the temperature range of 327 ∘ C < T < 344 ∘ C, delayed melting of PTFE was observed, with complete melting only occurring after up to several hours. The melting kinetics of nascent PTFE were analyzed by means of the isoconversional methodology, and an apparent activation energy of melting, dependent on the conversion, was determined. The compensation effect was utilized in order to derive the pre-exponential factor of the kinetic model. The numerical reconstruction of the kinetic model was compared with literature models and an Avrami-Erofeev model was identified as best fit of the experimental data. The predictions of the kinetic model were in good agreement with the observed time-dependent melting of nascent PTFE during isothermal and constant heating-rate experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...