Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 38(18): 5603-5616, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35446569

ABSTRACT

Nanoparticle-based delivery of therapeutics to the brain has had limited clinical impact due to challenges crossing the blood-brain barrier (BBB). Certain cells, such as monocytes, possess the ability to migrate across the BBB, making them attractive candidates for cell-based brain delivery strategies. In this work, we explore nanoparticle design parameters that impact both monocyte association and monocyte-mediated BBB transport. We use electrohydrodynamic jetting to prepare nanoparticles of varying sizes, compositions, and elasticity to address their impact on uptake by THP-1 monocytes and permeation across the BBB. An in vitro human BBB model is developed using human cerebral microvascular endothelial cells (hCMEC/D3) for the assessment of migration. We compare monocyte uptake of both polymeric and synthetic protein nanoparticles (SPNPs) of various sizes, as well as their effect on cell migration. SPNPs (human serum albumin/HSA or human transferrin/TF) are shown to promote increased monocyte-mediated transport across the BBB over polymeric nanoparticles. TF SPNPs (200 nm) associate readily, with an average uptake of 138 particles/cell. Nanoparticle loading is shown to influence the migration of THP-1 monocytes. The migration of monocytes loaded with 200 nm TF and 200 nm HSA SPNPs was 2.3-fold and 2.1-fold higher than that of an untreated control. RNA-seq analysis after TF SPNP treatment suggests that the upregulation of several migration genes may be implicated in increased monocyte migration (ex. integrin subunits α M and α L). Integrin ß 2 chain combines with either integrin subunit α M chain or integrin subunit α L chain to form macrophage antigen 1 and lymphocyte function-associated antigen 1 integrins. Both products play a pivotal role in the transendothelial migration cascade. Our findings highlight the potential of SPNPs as drug and/or gene delivery platforms for monocyte-mediated BBB transport, especially where conventional polymer nanoparticles are ineffective or otherwise not desirable.


Subject(s)
Monocytes , Nanoparticles , Endothelial Cells/metabolism , Humans , Integrins/metabolism , Transendothelial and Transepithelial Migration , Transferrin/metabolism
2.
ACS Macro Lett ; 9(2): 158-162, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-35638676

ABSTRACT

We report on the rapid formation of charge density gradients in polymer films by exposing poly([2-dimethylaminoethyl] methacrylate) (PDMAEMA) films resting on flat silica substrates to methyl iodide (i.e., MI, also known as iodomethane) vapors. We adjust the charge gradient by varying the MI concentration in solution and the process time. The thickness of the parent PDMAEMA film does not affect the diffusion of MI through and the reaction kinetics in the films. Instead, the diffusion of MI through the gaseous phase constitutes the limiting step in the overall process.

3.
Polymers (Basel) ; 8(4)2016 Apr 08.
Article in English | MEDLINE | ID: mdl-30979224

ABSTRACT

The impact of electrostatic attraction on the uptake of gold nanoparticles (AuNPs) into positively charged strong poly-[2-(Methacryloyloxy) ethyl] trimethylammonium chloride (PMETAC) polyelectrolyte brushes was investigated. In this work, PMETAC brushes were synthesized via surface-initiated atom transfer radical polymerization (Si-ATRP). PMETAC/AuNP composite materials were prepared by incubation of the polymer brush coated samples into 3-mercaptopropionic acid-capped AuNP (5 nm in diameter) suspension. The electrostatic interactions were tuned by changing the surface charge of the AuNPs through variations in pH value, while the charge of the PMETAC brush was not affected. Atomic-force microscopy (AFM), ellipsometry, UV/Vis spectroscopy, gravimetric analysis and transmission electron microscopy (TEM) were employed to study the loading and penetration into the polymer brush. The results show that the number density of attached AuNPs depends on the pH value and increases with increasing pH value. There is also strong evidence that the particle assembly is dependent on the pH value of the AuNP suspension. Incubation of PMETAC brushes in AuNP suspension at pH 4 led to the formation of a surface layer on top of the brush (2D assembly) due to sterical hindrance of the clustered AuNPs, while incubation in AuNP suspension at pH 8 led to deeper particle penetration into the brush (3D assembly). The straightforward control of particle uptake and assembly by tuning the charge density of the nanoparticle surface is a valuable tool for the development of materials for colorimetric sensor applications.

4.
Langmuir ; 30(43): 13033-41, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25275215

ABSTRACT

The effect of the brush grafting density on the loading of 13 nm gold nanoparticles (AuNPs) into stimuli-responsive poly(N,N-(dimethylamino ethyl) methacrylate) (PDMAEMA) brushes anchored to flat impenetrable substrates is reported. Atom-transfer radical polymerization (ATRP) is used to grow polymer brushes via a "grafting from" approach from a 2-bromo-2-methyl-N-(3-(triethoxysilyl) propyl) propanamide (BTPAm)-covered silicon substrate. The grafting density is varied by using mixtures of initiator and a "dummy" molecule that is not able to initiate polymerization. A systematic study is carried out by varying the brush grafting density while keeping all of the other parameters constant. X-ray reflectivity is a suitable tool for investigating the spatial structure of the hybrid, and it is combined with scanning electron microscopy and UV/vis spectroscopy to study the particle loading and interpenetration of the particles within the polymer brush matrix. The particle uptake increases with decreasing grafting density and is highest for an intermediate grafting density because more space between the polymer chains is available. For very low grafting densities of PDMAEMA brushes, the particle uptake decreases because of a lack of the polymer matrix for the attachment of particles. The structure of the surface-grafted polymer chains changes after particle attachment. More water is incorporated into the brush matrix after particle immobilization, which leads to a swelling of the polymer chains in the hybrid material. Water can be removed from the brush by decreasing the relative humidity, which leads to brush shrinking and forces the AuNPs to get closer to each other.

SELECTION OF CITATIONS
SEARCH DETAIL
...