Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 48, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013268

ABSTRACT

Reconstructing intended speech from neural activity using brain-computer interfaces holds great promises for people with severe speech production deficits. While decoding overt speech has progressed, decoding imagined speech has met limited success, mainly because the associated neural signals are weak and variable compared to overt speech, hence difficult to decode by learning algorithms. We obtained three electrocorticography datasets from 13 patients, with electrodes implanted for epilepsy evaluation, who performed overt and imagined speech production tasks. Based on recent theories of speech neural processing, we extracted consistent and specific neural features usable for future brain computer interfaces, and assessed their performance to discriminate speech items in articulatory, phonetic, and vocalic representation spaces. While high-frequency activity provided the best signal for overt speech, both low- and higher-frequency power and local cross-frequency contributed to imagined speech decoding, in particular in phonetic and vocalic, i.e. perceptual, spaces. These findings show that low-frequency power and cross-frequency dynamics contain key information for imagined speech decoding.


Subject(s)
Brain-Computer Interfaces , Electrocorticography , Language , Speech , Adult , Brain/diagnostic imaging , Brain Mapping , Electrodes , Female , Humans , Imagination , Male , Middle Aged , Phonetics , Young Adult
2.
Sci Eng Ethics ; 26(4): 2295-2311, 2020 08.
Article in English | MEDLINE | ID: mdl-32356091

ABSTRACT

Brain reading technologies are rapidly being developed in a number of neuroscience fields. These technologies can record, process, and decode neural signals. This has been described as 'mind reading technology' in some instances, especially in popular media. Should the public at large, be concerned about this kind of technology? Can it really read minds? Concerns about mind-reading might include the thought that, in having one's mind open to view, the possibility for free deliberation, and for self-conception, are eroded where one isn't at liberty to privately mull things over. Themes including privacy, cognitive liberty, and self-conception and expression appear to be areas of vital ethical concern. Overall, this article explores whether brain reading technologies are really mind reading technologies. If they are, ethical ways to deal with them must be developed. If they are not, researchers and technology developers need to find ways to describe them more accurately, in order to dispel unwarranted concerns and address appropriately those that are warranted.


Subject(s)
Brain , Neurosciences , Speech Recognition Software , Speech , Humans , Morals , Privacy , Speech Recognition Software/ethics
3.
Sci Rep ; 10(1): 7637, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32376909

ABSTRACT

The traditional approach in neuroscience relies on encoding models where brain responses are related to different stimuli in order to establish dependencies. In decoding tasks, on the contrary, brain responses are used to predict the stimuli, and traditionally, the signals are assumed stationary within trials, which is rarely the case for natural stimuli. We hypothesize that a decoding model assuming each experimental trial as a realization of a random process more likely reflects the statistical properties of the undergoing process compared to the assumption of stationarity. Here, we propose a Coherence-based spectro-spatial filter that allows for reconstructing stimulus features from brain signal's features. The proposed method extracts common patterns between features of the brain signals and the stimuli that produced them. These patterns, originating from different recording electrodes are combined, forming a spatial filter that produces a unified prediction of the presented stimulus. This approach takes into account frequency, phase, and spatial distribution of brain features, hence avoiding the need to predefine specific frequency bands of interest or phase relationships between stimulus and brain responses manually. Furthermore, the model does not require the tuning of hyper-parameters, reducing significantly the computational load attached to it. Using three different cognitive tasks (motor movements, speech perception, and speech production), we show that the proposed method consistently improves stimulus feature predictions in terms of correlation (group averages of 0.74 for motor movements, 0.84 for speech perception, and 0.74 for speech production) in comparison with other methods based on regularized multivariate regression, probabilistic graphical models and artificial neural networks. Furthermore, the model parameters revealed those anatomical regions and spectral components that were discriminant in the different cognitive tasks. This novel method does not only provide a useful tool to address fundamental neuroscience questions, but could also be applied to neuroprosthetics.


Subject(s)
Cerebral Cortex/physiology , Electroencephalography , Electrophysiological Phenomena , Models, Neurological , Sense of Coherence , Adult , Algorithms , Brain Mapping , Cerebral Cortex/diagnostic imaging , Electroencephalography/methods , Female , Humans , Magnetic Resonance Imaging , Magnetoencephalography , Psychomotor Performance , Speech Perception , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...