Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Mar Biol ; 87(1): 443-472, 2020.
Article in English | MEDLINE | ID: mdl-33293019

ABSTRACT

The invasive brittle star Ophiothela mirabilis (family Ophiotrichidae), a tropical Indo-Pacific endemic species, first reported in Atlantic waters off southern Brazil in 2000, has extended its range northward to the Caribbean Sea, to the Lesser Antilles in 2011, and was first reported in south Florida in January 2019. Its occurrence in southeast Florida extends along nearly 70km of coastline, from near the Port of Miami, Miami-Dade County, northward to Deerfield Beach, Broward County. It occurs abundantly as an epizoite on octocorals, attaining population densities of 25 individuals and more per 10-cm long octocoral stem. The surface texture of octocoral hosts (rough, smooth) did not affect the densities of the ophiuroid epizoites, and there were significantly greater abundances on octocorals during two winter sampling periods than in the summer. Beige and orange-coloured morphs are sometimes present on the same octocoral stem. Gut content analysis supported a suspension feeding mode, revealing essentially identical ingested items in both colour morphs with a preponderance of amorphous detritus and filamentous algae. Molecular genetic evidence (COI & 16s) has established the identity of O. mirabilis and its relationship to invasive Brazilian populations. The orange and beige morphs form two distinct, but closely related lineages that may represent two separate introductions. The orange morph shares haplotypes with Brazilian and Caribbean specimens suggesting a further range expansion of the 'original' invasion. The beige morph, however, shares haplotypes with specimens from the Mexican Pacific and Peru and potentially represents a secondary introduction. Traits promoting dispersal and establishment of this species in new habitats are manifold: vagility and ability to cling tightly to diverse host taxa (e.g. sponges, cnidarians, bryozoans, and echinoderms), frequent asexual reproduction (fissiparity), suspension feeding, including a wide range of dietary items, possession of integument-covered ossicles and arm spines offering protection from predators, and an effective competitive edge over associated microbiota for substrate space.


Subject(s)
Echinodermata , Introduced Species , Animals , Ecosystem , Florida
2.
PeerJ ; 3: e1188, 2015.
Article in English | MEDLINE | ID: mdl-26413431

ABSTRACT

Sharks and rays are increasingly being identified as high-risk species for extinction, prompting urgent assessments of their local or regional populations. Advanced genetic analyses can contribute relevant information on effective population size and connectivity among populations although acquiring sufficient regional sample sizes can be challenging. DNA is typically amplified from tissue samples which are collected by hand spears with modified biopsy punch tips. This technique is not always popular due mainly to a perception that invasive sampling might harm the rays, change their behaviour, or have a negative impact on tourism. To explore alternative methods, we evaluated the yields and PCR success of DNA template prepared from the manta ray mucus collected underwater and captured and stored on a Whatman FTA™ Elute card. The pilot study demonstrated that mucus can be effectively collected underwater using toothbrush. DNA stored on cards was found to be reliable for PCR-based population genetics studies. We successfully amplified mtDNA ND5, nuclear DNA RAG1, and microsatellite loci for all samples and confirmed sequences and genotypes being those of target species. As the yields of DNA with the tested method were low, further improvements are desirable for assays that may require larger amounts of DNA, such as population genomic studies using emerging next-gen sequencing.

3.
PLoS One ; 10(8): e0129668, 2015.
Article in English | MEDLINE | ID: mdl-26247465

ABSTRACT

BACKGROUND: Recent genomic information has revealed that neuroglobin and cytoglobin are the two principal lineages of vertebrate hemoglobins, with the latter encompassing the familiar myoglobin and α-globin/ß-globin tetramer hemoglobin, and several minor groups. In contrast, very little is known about hemoglobins in echinoderms, a phylum of exclusively marine organisms closely related to vertebrates, beyond the presence of coelomic hemoglobins in sea cucumbers and brittle stars. We identified about 50 hemoglobins in sea urchin, starfish and sea cucumber genomes and transcriptomes, and used Bayesian inference to carry out a molecular phylogenetic analysis of their relationship to vertebrate sequences, specifically, to assess the hypothesis that the neuroglobin and cytoglobin lineages are also present in echinoderms. RESULTS: The genome of the sea urchin Strongylocentrotus purpuratus encodes several hemoglobins, including a unique chimeric 14-domain globin, 2 androglobin isoforms and a unique single androglobin domain protein. Other strongylocentrotid genomes appear to have similar repertoires of globin genes. We carried out molecular phylogenetic analyses of 52 hemoglobins identified in sea urchin, brittle star and sea cucumber genomes and transcriptomes, using different multiple sequence alignment methods coupled with Bayesian and maximum likelihood approaches. The results demonstrate that there are two major globin lineages in echinoderms, which are related to the vertebrate neuroglobin and cytoglobin lineages. Furthermore, the brittle star and sea cucumber coelomic hemoglobins appear to have evolved independently from the cytoglobin lineage, similar to the evolution of erythroid oxygen binding globins in cyclostomes and vertebrates. CONCLUSION: The presence of echinoderm globins related to the vertebrate neuroglobin and cytoglobin lineages suggests that the split between neuroglobins and cytoglobins occurred in the deuterostome ancestor shared by echinoderms and vertebrates.


Subject(s)
Echinodermata/genetics , Globins/genetics , Nerve Tissue Proteins/genetics , Animals , Bayes Theorem , Cytoglobin , Echinodermata/chemistry , Globins/chemistry , Likelihood Functions , Models, Molecular , Nerve Tissue Proteins/chemistry , Neuroglobin , Phylogeny , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL