Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Environ Epidemiol ; 8(4): e319, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38983882

ABSTRACT

Background: Available evidence suggests a link between exposure to transportation noise and an increased risk of obesity. We aimed to assess exposure-response functions for long-term residential exposure to road traffic, railway and aircraft noise, and markers of obesity. Methods: Our cross-sectional study is based on pooled data from 11 Nordic cohorts, including up to 162,639 individuals with either measured (69.2%) or self-reported obesity data. Residential exposure to transportation noise was estimated as a time-weighted average Lden 5 years before recruitment. Adjusted linear and logistic regression models were fitted to assess beta coefficients and odds ratios (OR) with 95% confidence intervals (CI) for body mass index, overweight, and obesity, as well as for waist circumference and central obesity. Furthermore, natural splines were fitted to assess the shape of the exposure-response functions. Results: For road traffic noise, the OR for obesity was 1.06 (95% CI = 1.03, 1.08) and for central obesity 1.03 (95% CI = 1.01, 1.05) per 10 dB Lden. Thresholds were observed at around 50-55 and 55-60 dB Lden, respectively, above which there was an approximate 10% risk increase per 10 dB Lden increment for both outcomes. However, linear associations only occurred in participants with measured obesity markers and were strongly influenced by the largest cohort. Similar risk estimates as for road traffic noise were found for railway noise, with no clear thresholds. For aircraft noise, results were uncertain due to the low number of exposed participants. Conclusion: Our results support an association between road traffic and railway noise and obesity.

2.
Sci Total Environ ; 918: 170638, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38316299

ABSTRACT

Affected by both future anthropogenic emissions and climate change, future prediction of PM2.5 and its Oxidative Potential (OP) distribution is a significant challenge, especially in developing countries like China. To overcome this challenge, we estimated historical and future PM2.5 concentrations and associated OP using the Danish Eulerian Hemispheric Model (DEHM) system with meteorological input from WRF weather forecast model. Considering different future socio-economic pathways and emission scenario assumptions, we quantified how the contribution from various anthropogenic emission sectors will change under these scenarios. Results show that compared to the CESM_SSP2-4.5_CLE scenario (based on moderate radiative forcing and Current Legislation Emission), the CESM_SSP1-2.6_MFR scenario (based on sustainability development and Maximum Feasible Reductions) is projected to yield greater environmental and health benefits in the future. Under the CESM_SSP1-2.6_MFR scenario, annual average PM2.5 concentrations (OP) are expected to decrease to 30 (0.8 nmolmin-1m-3) in almost all regions by 2030, which will be 65 % (67 %) lower than that in 2010. From a long-term perspective, it is anticipated that OP in the Fen-Wei Plain region will experience the maximum reduction (82.6 %) from 2010 to 2049. Largely benefiting from the effective control of PM2.5 in the region, it has decreased by 82.1 %. Crucially, once emission reduction measures reach a certain level (in 2040), further reductions become less significant. This study also emphasized the significant role of secondary aerosol formation and biomass-burning sources in influencing OP during both historical and future periods. In different scenarios, the reduction range of OP from 2010 to 2049 is estimated to be between 71 % and 85 % by controlling precursor emissions involved in secondary aerosol formation and emissions from biomass burning. Results indicate that strengthening the control of anthropogenic emissions in various regions are key to achieving air quality targets and safeguarding human health in the future.

3.
Sci Total Environ ; 918: 170550, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38320693

ABSTRACT

Detailed spatial models of monthly air pollution levels at a very fine spatial resolution (25 m) can help facilitate studies to explore critical time-windows of exposure at intermediate term. Seasonal changes in air pollution may affect both levels and spatial patterns of air pollution across Europe. We built Europe-wide land-use regression (LUR) models to estimate monthly concentrations of regulated air pollutants (NO2, O3, PM10 and PM2.5) between 2000 and 2019. Monthly average concentrations were collected from routine monitoring stations. Including both monthly-fixed and -varying spatial variables, we used supervised linear regression (SLR) to select predictors and geographically weighted regression (GWR) to estimate spatially-varying regression coefficients for each month. Model performance was assessed with 5-fold cross-validation (CV). We also compared the performance of the monthly LUR models with monthly adjusted concentrations. Results revealed significant monthly variations in both estimates and model structure, particularly for O3, PM10, and PM2.5. The 5-fold CV showed generally good performance of the monthly GWR models across months and years (5-fold CV R2: 0.31-0.66 for NO2, 0.4-0.79 for O3, 0.4-0.78 for PM10, 0.46-0.87 for PM2.5). Monthly GWR models slightly outperformed monthly-adjusted models. Correlations between monthly GWR model were generally moderate to high (Pearson correlation >0.6). In conclusion, we are the first to develop robust monthly LUR models for air pollution in Europe. These monthly LUR models, at a 25 m spatial resolution, enhance epidemiologists to better characterize Europe-wide intermediate-term health effects related to air pollution, facilitating investigations into critical exposure time windows in birth cohort studies.

4.
Eur J Prev Cardiol ; 31(1): 131-141, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37738461

ABSTRACT

AIMS: The three correlated environmental exposures (air pollution, road traffic noise, and green space) have all been associated with the risk of myocardial infarction (MI). The present study aimed to analyse their independent and cumulative association with MI. METHODS AND RESULTS: In a cohort of all Danes aged 50 or older in the period 2005-17, 5-year time-weighted average exposure to fine particles (PM2.5), ultrafine particles, elemental carbon, nitrogen dioxide (NO2), and road traffic noise at the most and least exposed façades of residence was estimated. Green space around residences was estimated from land use maps. Cox proportional hazard models were used to estimate hazard ratios (HRs) and 95% confidence interval (CI), and cumulative risk indices (CRIs) were calculated. All expressed per interquartile range. Models were adjusted for both individual and neighbourhood-level socio-demographic covariates. The cohort included 1 964 702 persons. During follow-up, 71 285 developed MI. In single-exposure models, all exposures were associated with an increased risk of MI. In multi-pollutant analyses, an independent association with risk of MI was observed for PM2.5 (HR: 1.026; 95% CI: 1.002-1.050), noise at most exposed façade (HR: 1.024; 95% CI: 1.012-1.035), and lack of green space within 150 m of residence (HR: 1.018; 95% CI: 1.010-1.027). All three factors contributed significantly to the CRI (1.089; 95% CI: 1.076-1.101). CONCLUSION: In a nationwide cohort study, air pollution, noise, and lack of green space were all independently associated with an increased risk of MI. The air pollutant PM2.5 was closest associated with MI risk.


The present study aimed to analyse their independent and cumulative association of the three correlated environmental exposures: air pollution, road traffic noise, and green space with MI. Air pollution, noise, and lack of green space were all independently associated with MI.Risk estimates for air pollution, noise, and lack of green space were similar, indicating that all may be equally relevant targets for regulatory measures.


Subject(s)
Air Pollutants , Air Pollution , Myocardial Infarction , Humans , Noise/adverse effects , Cohort Studies , Parks, Recreational , Air Pollution/adverse effects , Air Pollutants/adverse effects , Myocardial Infarction/diagnosis , Myocardial Infarction/epidemiology , Myocardial Infarction/etiology , Particulate Matter/adverse effects , Environmental Exposure/adverse effects , Denmark/epidemiology
5.
Clin Microbiol Infect ; 30(1): 122-129, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37858866

ABSTRACT

OBJECTIVES: The association between air pollution and risk of respiratory tract infection (RTI) in adults needs to be clarified in settings with low to moderate levels of air pollution. We investigated this in the Danish population between 2004 and 2016. METHODS: We included 3 653 490 persons aged 18-64 years in a nested case-control study. Exposure was defined as the average daily concentration at the individual's residential address of CO, NOX, NO2, O3, SO2, NH3, PPM2.5, black carbon, organic carbon, mineral dust, sea salt, secondary inorganic aerosols, SO42-, NO3-, NH4+, secondary organic aerosols, PM2.5, and PM10 during a 3-month exposure window. RTIs were defined by hospitalization for RTIs. Incidence rate ratios (IRRs) and 95% CIs were estimated comparing highest with lowest decile of exposure using conditional logistic regression models. RESULTS: In total, 188 439 incident cases of RTI were identified. Exposure to most air pollutants was positively associated with risk of RTI. For example, NO2 showed an IRR of 1.52 (CI: 1.48-1.55), and PM2.5 showed an IRR of 1.45 (CI: 1.40-1.50). In contrast, exposure to sea salt, PM10, NH3, and O3 was negatively associated with a risk of RTIs. DISCUSSION: In this nationwide study comprising adults, exposure to air pollution was associated with risk of RTIs and subgroups hereof. Sea salt, PM10, NH3, and O3 may be proxies for rural areas, as the levels of these species in Denmark are higher near the western coastlines and/or in rural areas with fewer combustion sources.


Subject(s)
Air Pollutants , Air Pollution , Respiratory Tract Infections , Humans , Adult , Nitrogen Dioxide , Case-Control Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Air Pollution/adverse effects , Air Pollutants/adverse effects , Air Pollutants/analysis , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/etiology , Particulate Matter/adverse effects , Particulate Matter/analysis , Carbon , Denmark/epidemiology , Respiratory Aerosols and Droplets
7.
Environ Res ; 233: 116426, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37336432

ABSTRACT

Air pollution is a significant contributor to the global burden of disease with a plethora of associated health effects such as pulmonary and systemic inflammation. C-reactive protein (CRP) is associated with a wide range of diseases and is associated with several exposures. Studies on the effect of air pollution exposure on CRP levels in low to moderate pollution settings have shown inconsistent results. In this cross-sectional study high sensitivity CRP measurements on 18,463 Danish blood donors were linked to modelled air pollution data for NOx, NO2, O3, CO, SO2, NH3, mineral dust, black carbon, organic carbon, sea salt, secondary inorganic aerosols and its components, primary PM2.5, secondary organic aerosols, total PM2.5, and total PM10 at their residential address over the previous month. Associations were analysed using ordered logistic regression with CRP quartile as individuals outcome and air pollution exposure as scaled deciles. Analyses were adjusted for health related and socioeconomic covariates using health questionnaires and Danish register data. Exposure to different air pollution components was generally associated with higher CRP (odds ratio estimates ranging from 1.11 to 1.67), while exposure to a few air pollution components was associated with lower CRP. For example, exposure to NO2 increased the odds of high CRP 1.32-fold (95%CI 1.16-1.49), while exposure to NH3 decreased the odds of high CRP 0.81-fold (95%CI 0.73-0.89). This large study among healthy individuals found air pollution exposure to be associated with increased levels of CRP even in a setting with low to moderate air pollution levels.


Subject(s)
Air Pollutants , Air Pollution , Humans , Air Pollutants/adverse effects , Air Pollutants/analysis , Blood Donors , C-Reactive Protein/analysis , Carbon/analysis , Cross-Sectional Studies , Denmark/epidemiology , Dust/analysis , Environmental Exposure/analysis , Nitrogen Dioxide/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis
8.
Scand J Public Health ; : 14034948231178076, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37278162

ABSTRACT

AIMS: We provide an overview of nationwide environmental data available for Denmark and its linkage potentials to individual-level records with the aim of promoting research on the potential impact of the local surrounding environment on human health. BACKGROUND: Researchers in Denmark have unique opportunities for conducting large population-based studies treating the entire Danish population as one big, open and dynamic cohort based on nationally complete population and health registries. So far, most research in this area has utilised individual- and family-level information to study the clustering of disease in families, comorbidities, risk of, and prognosis after, disease onset, and social gradients in disease risk. Linking environmental data in time and space to individuals enables novel possibilities for studying the health effects of the social, built and physical environment. METHODS: We describe the possible linkage between individuals and their local surrounding environment to establish the exposome - that is, the total environmental exposure of an individual over their life course. CONCLUSIONS: The currently available nationwide longitudinal environmental data in Denmark constitutes a valuable and globally rare asset that can help explore the impact of the exposome on human health.

9.
Lancet Reg Health Eur ; 31: 100655, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37265507

ABSTRACT

Background: Air pollution, road traffic noise, and green space are correlated factors, associated with risk of stroke. We investigated their independent relationship with stroke in multi-exposure analyses and estimated their cumulative stroke burden. Methods: For all persons, ≥50 years of age and living in Denmark from 2005 to 2017, we established complete address histories and estimated running 5-year mean exposure to fine particles (PM2.5), ultrafine particles, elemental carbon, nitrogen dioxide (NO2), and road traffic noise at the most, and least exposed façade. For air pollutants, we estimated total, and non-traffic contributions. Green space around the residence was estimated from land use maps. Hazard ratios (HR) and 95% confidence limits (CL) were estimated with Cox proportional hazards models and used to calculate cumulative risk indices (CRI). We adjusted for the individual and sociodemographic covariates available in our dataset (which did not include information about individual life styles and medical conditions). Findings: The cohort accumulated 18,344,976 years of follow-up and 94,256 cases of stroke. All exposures were associated with risk of stroke in single pollutant models. In multi-pollutant analyses, only PM2.5 (HR: 1.058, 95% CI: 1.040-1.075) and noise at most exposed façade (HR: 1.033, 95% CI: 1.024-1.042) were independently associated with a higher risk of stroke. Both noise and air pollution contributed substantially to the CRI (1.103, 95% CI: 1.092-1.114) in the model with noise, green space, and total PM2.5 concentrations. Interpretation: Environmental exposure to air pollution and noise were both independently associated with risk of stroke. Funding: Health Effects Institute (HEI) (Assistance Award No. R-82811201).

10.
Environ Health Perspect ; 131(5): 57010, 2023 05.
Article in English | MEDLINE | ID: mdl-37235386

ABSTRACT

BACKGROUND: Air pollution is negatively associated with cardiovascular health. Impediments to efficient regulation include lack of knowledge about which sources of air pollution contributes most to health burden and few studies on effects of the potentially more potent ultrafine particles (UFP). OBJECTIVE: The authors aimed to investigate myocardial infarction (MI) morbidity and specific types and sources of air pollution. METHODS: We identified all persons living in Denmark in the period 2005-2017, age >50 y and never diagnosed with MI. We quantified 5-y running time-weighted mean concentrations of air pollution at residencies, both total and apportioned to traffic and nontraffic sources. We evaluated particulate matter (PM) with aerodynamic diameter ≤2.5µm (PM2.5), <0.1µm (UFP), elemental carbon (EC), and nitrogen dioxide (NO2). We used Cox proportional hazards models, with adjustment for time-varying exposures, and personal and area-level demographic and socioeconomic covariates from high-quality administrative registers. RESULTS: In this nationwide cohort of 1,964,702 persons (with 18 million person-years of follow-up and 71,285 cases of MI), UFP and PM2.5 were associated with increased risk of MI with hazard ratios (HRs) per interquartile range (IQR) of 1.040 [95% confidence interval (CI): 1.025, 1.055] and 1.053 (95% CI: 1.035, 1.071), respectively. HRs per IQR of UFP and PM2.5 from nontraffic sources were similar to the total (1.034 and 1.051), whereas HRs for UFP and PM2.5 from traffic sources were smaller (1.011 and 1.011). The HR for EC from traffic sources was 1.013 (95% CI: 1.003, 1.023). NO2 from nontraffic sources was associated with MI (HR=1.048; 95% CI: 1.034, 1.062) but not from traffic sources. In general, nontraffic sources contributed more to total air pollution levels than national traffic sources. CONCLUSIONS: PM2.5 and UFP from traffic and nontraffic sources were associated with increased risk of MI, with nontraffic sources being the dominant source of exposure and morbidity. https://doi.org/10.1289/EHP10556.


Subject(s)
Air Pollutants , Air Pollution , Myocardial Infarction , Humans , Particulate Matter/adverse effects , Cohort Studies , Air Pollutants/analysis , Environmental Exposure/adverse effects , Air Pollution/adverse effects , Myocardial Infarction/epidemiology , Denmark/epidemiology
11.
Environ Res ; 229: 115905, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37086881

ABSTRACT

Air pollution is associated with increased risk of myocardial infarction (MI), but it is unresolved to what extent the association is modified by factors such as socioeconomic status, comorbidities, financial stress, residential green space, or road traffic noise. We formed a cohort of all (n = 1,964,702) Danes, aged 50-85 years, with 65,311 cases of MI during the followed-up period 2005-2017. For all participants we established residential five-year running average exposure to particulate matter <2.5 µm (PM2.5), ultrafine particles (UFP, <0.1 µm), elemental carbon (EC) and nitrogen dioxide (NO2). We evaluated risk in population strata, using Aalen additive hazards models to estimate absolute risk and Cox proportional hazards models to estimate relative risk of MI with 95% confidence intervals (CI). PM2.5 and the other pollutant were associated with MI. Lower education and lower income were associated with higher absolute risks of MI from air pollution, whereas no clear effect modification was apparent for relative risk estimates. For example, 5 µg/m3 higher PM2.5 was associated with HR for MI of 1.16 (95% CI: 1.10-1.22) among those with only mandatory education and 1.13 (95% CI: 1.03-1.24) among those with long education. The corresponding rate differences per 100,000 person years were 243 (95% CI: 216-271) and 358 (95% CI: 338-379), respectively. Higher level of comorbidity was consistently across all four pollutants associated with both higher absolute and relative risk of MI. In conclusion, people with comorbid conditions or of lower SES appeared more vulnerable to long-term exposure to air pollution and more cases of MI may be prevented by focused interventions in these groups.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Myocardial Infarction , Humans , Cohort Studies , Air Pollutants/analysis , Environmental Exposure/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/analysis , Myocardial Infarction/chemically induced , Myocardial Infarction/epidemiology
12.
Int J Hyg Environ Health ; 251: 114165, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37121155

ABSTRACT

OBJECTIVES: Air pollution increases the risk of stroke, but the literature on identifying susceptible subgroups of populations is scarce and inconsistent. The aim of this study was to investigate if the association between air pollution and risk of stroke differed by sociodemographic factors, financial stress, comorbid conditions, and residential road traffic noise, population density and green space. METHODS: We assessed long-term exposure to air pollution with ultrafine particles, PM2.5, elemental carbon and NO2 for a cohort of 1,971,246 Danes aged 50-85 years. During follow-up from 2005 to 2017, we identified 83,211 incident stroke cases. We used Cox proportional hazards model (relative risk) and Aalen additive hazards models (absolute risk) to estimate associations and confidence intervals (CI) between 5-year running means of air pollution at the residence and risk of stroke in population strata. RESULTS: All four pollutants were associated with higher risk of stroke. The association between air pollution and stroke was strongest among individuals with comorbidities, with shorter education, lower income and being retired. The results also indicated stronger associations among individuals living in less populated areas, and with low noise levels and more green space around the residence. Estimates of absolute risk seemed better suited to detect such interactions than estimates of relative risk. For example for PM2.5 the hazard ratio for stroke was 1.28 (95%CI: 1.22-1.34) and 1.26 (95%CI: 1.16-1.37) among those with mandatory and medium/long education respectively. The corresponding rate difference estimates per 100,000 person years were 568 (95%CI: 543-594) and 423(95%CI: 390-456) CONCLUSION: The associations between air pollution and risk of stroke was stronger among individuals of lower socioeconomic status or with pre-existing comorbid conditions. Absolute risk estimates were better suited to identify such effect modification.


Subject(s)
Air Pollutants , Air Pollution , Stroke , Humans , Cohort Studies , Environmental Exposure/analysis , Air Pollution/adverse effects , Stroke/epidemiology , Air Pollutants/analysis , Particulate Matter/analysis , Denmark/epidemiology
13.
Int J Epidemiol ; 52(3): 727-737, 2023 06 06.
Article in English | MEDLINE | ID: mdl-36921285

ABSTRACT

BACKGROUND: Long-term air pollution is a risk factor for stroke. Which types and sources of air pollution contribute most to stroke in populations is unknown. We investigated whether risk of stroke differed by type and source of air pollution. METHODS: We selected all persons aged >50 years and living in Denmark in the period 2005-17. We estimated running 5-year mean residential air-pollution concentrations of particulate matter <2.5 µm (PM2.5), ultrafine particles (UFP), elemental carbon (EC) and nitrogen dioxide (NO2). Pollutants were modelled as total air pollution from all emission sources, as well as apportioned into contributions from non-traffic and traffic sources. Hazard ratios (HRs) and CIs were estimated by using Cox proportional hazards models, adjusting for area-level and personal demographic and socio-economic covariates. We identified all primary strokes from hospital and mortality registers. RESULTS: The cohort numbered 2 million people and 94 256 cases of stroke. Interquartile ranges (IQR) of air pollution were associated with risk of stroke with HRs of 1.077 (95% CI: 1.061-1.094, IQR: 1.85 µg/m3) for PM2.5, 1.039 (1.026-1.052, IQR: 4248 particles/cm3) for UFP, 1.009 (1.001-1.018, IQR: 0.28 µg/m3) for EC and 1.028 (1.017-1.040, IQR: 7.15 µg/m3) for NO2. Traffic sources contributed little to the total exposure. HRs associated with air pollution from traffic were close to the null, whereas non-traffic sources tended to be associated with HRs higher than those for total air pollution, e.g. for non-traffic PM2.5, the HR was 1.091 (1.074-1.108). CONCLUSIONS: Air pollution, including UFP, was associated with risk of stroke. The risk appeared attributable mainly to air pollution from non-traffic sources.


Subject(s)
Air Pollutants , Air Pollution , Stroke , Humans , Air Pollutants/adverse effects , Air Pollutants/analysis , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Nitrogen Dioxide/adverse effects , Nitrogen Dioxide/analysis , Air Pollution/adverse effects , Particulate Matter/adverse effects , Particulate Matter/analysis , Stroke/epidemiology , Carbon , Denmark/epidemiology
14.
Environ Health Perspect ; 131(2): 27008, 2023 02.
Article in English | MEDLINE | ID: mdl-36802347

ABSTRACT

BACKGROUND: Exposure to air pollution has been associated with a higher risk of type 2 diabetes (T2D), but studies investigating whether deprived groups are more susceptible to the harmful effects of air pollution are inconsistent. OBJECTIVES: We aimed to investigate whether the association between air pollution and T2D differed according to sociodemographic characteristics, comorbidity, and coexposures. METHODS: We estimated residential exposure to PM2.5, ultrafine particles (UFP), elemental carbon, and NO2 for all persons living in Denmark in the period 2005-2017. In total, 1.8 million persons 50-80 y of age were included for main analyses of whom 113,985 developed T2D during follow-up. We conducted additional analyses on 1.3 million persons age 35-50 y. Using Cox proportional hazards model (relative risk) and Aalens additive hazard model (absolute risk), we calculated associations between 5-y time-weighted running means of air pollution and T2D in strata of sociodemographic variables, comorbidity, population density, road traffic noise, and green space proximity. RESULTS: Air pollution was associated with T2D, especially among people age 50-80 y, with hazard ratios of 1.17 [95% confidence interval (CI): 1.13, 1.21] per 5 µg/m3 PM2.5 and 1.16 (95% CI: 1.13, 1.19) per 10,000 UFP/cm3. In the age 50-80 y population, we found higher associations between air pollution and T2D among men in comparison with women, people with lower education vs. individuals with high education, people with medium income vs. those with low or high income, people cohabiting vs. those living alone, and people with comorbidities vs. those without comorbidities. We observed no marked changes according to occupation, population density, road noise, or surrounding greenness. In the age 35-50 y population, similar tendencies were observed, except in relation to sex and occupation, where we observed associations with air pollution only among women and blue-collar workers. DISCUSSION: We found stronger associations between air pollution and T2D among people with existing comorbidities and weaker associations among people with high socioeconomic status in comparison with those with lower socioeconomic status. https://doi.org/10.1289/EHP11347.


Subject(s)
Air Pollutants , Air Pollution , Diabetes Mellitus, Type 2 , Male , Humans , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Diabetes Mellitus, Type 2/epidemiology , Air Pollutants/analysis , Cohort Studies , Environmental Exposure/analysis , Particulate Matter/analysis , Comorbidity
15.
Environ Res ; 224: 115454, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36764429

ABSTRACT

Background Colon cancer incidence is rising globally, and factors pertaining to urbanization have been proposed involved in this development. Traffic noise may increase colon cancer risk by causing sleep disturbance and stress, thereby inducing known colon cancer risk-factors, e.g. obesity, diabetes, physical inactivity, and alcohol consumption, but few studies have examined this. Objectives The objective of this study was to investigate the association between traffic noise and colon cancer (all, proximal, distal) in a pooled population of 11 Nordic cohorts, totaling 155,203 persons. Methods We identified residential address history and estimated road, railway, and aircraft noise, as well as air pollution, for all addresses, using similar exposure models across cohorts. Colon cancer cases were identified through national registries. We analyzed data using Cox Proportional Hazards Models, adjusting main models for harmonized sociodemographic and lifestyle data. Results During follow-up (median 18.8 years), 2757 colon cancer cases developed. We found a hazard ratio (HR) of 1.05 (95% confidence interval (CI): 0.99-1.10) per 10-dB higher 5-year mean time-weighted road traffic noise. In sub-type analyses, the association seemed confined to distal colon cancer: HR 1.06 (95% CI: 0.98-1.14). Railway and aircraft noise was not associated with colon cancer, albeit there was some indication in sub-type analyses that railway noise may also be associated with distal colon cancer. In interaction-analyses, the association between road traffic noise and colon cancer was strongest among obese persons and those with high NO2-exposure. Discussion A prominent study strength is the large population with harmonized data across eleven cohorts, and the complete address-history during follow-up. However, each cohort estimated noise independently, and only at the most exposed façade, which may introduce exposure misclassification. Despite this, the results of this pooled study suggest that traffic noise may be a risk factor for colon cancer, especially of distal origin.


Subject(s)
Air Pollution , Colonic Neoplasms , Noise, Transportation , Humans , Cohort Studies , Risk Factors , Environmental Exposure/analysis , Denmark/epidemiology
16.
Environ Health Perspect ; 131(1): 17003, 2023 01.
Article in English | MEDLINE | ID: mdl-36607286

ABSTRACT

BACKGROUND: Transportation noise may induce cardiovascular disease, but the public health implications are unclear. OBJECTIVES: The study aimed to assess exposure-response relationships for different transportation noise sources and ischemic heart disease (IHD), including subtypes. METHODS: Pooled analyses were performed of nine cohorts from Denmark and Sweden, together including 132,801 subjects. Time-weighted long-term exposure to road, railway, and aircraft noise, as well as air pollution, was estimated based on residential histories. Hazard ratios (HRs) were calculated using Cox proportional hazards models following adjustment for lifestyle and socioeconomic risk factors. RESULTS: A total of 22,459 incident cases of IHD were identified during follow-up from national patient and mortality registers, including 7,682 cases of myocardial infarction. The adjusted HR for IHD was 1.03 [95% confidence interval (CI) 1.00, 1.05] per 10 dB Lden for both road and railway noise exposure during 5 y prior to the event. Higher risks were indicated for IHD excluding angina pectoris cases, with HRs of 1.06 (95% CI: 1.03, 1.08) and 1.05 (95% CI: 1.01, 1.08) per 10 dB Lden for road and railway noise, respectively. Corresponding HRs for myocardial infarction were 1.02 (95% CI: 0.99, 1.05) and 1.04 (95% CI: 0.99, 1.08). Increased risks were observed for aircraft noise but without clear exposure-response relations. A threshold at around 55 dB Lden was suggested in the exposure-response relation for road traffic noise and IHD. DISCUSSION: Exposure to road, railway, and aircraft noise in the prior 5 y was associated with an increased risk of IHD, particularly after exclusion of angina pectoris cases, which are less well identified in the registries. https://doi.org/10.1289/EHP10745.


Subject(s)
Myocardial Infarction , Myocardial Ischemia , Noise, Transportation , Humans , Noise, Transportation/adverse effects , Environmental Exposure , Myocardial Ischemia/epidemiology , Myocardial Infarction/epidemiology , Angina Pectoris
17.
Environ Int ; 171: 107685, 2023 01.
Article in English | MEDLINE | ID: mdl-36502699

ABSTRACT

BACKGROUND: Ambient fine particulate matter (PM2.5) causes millions of deaths every year worldwide. Identification of the most harmful types of PM2.5 would facilitate efficient prevention strategies. OBJECTIVES: The aim of this study was to investigate associations between components of PM2.5 and mortality in a nation-wide Danish population. METHODS: Our study base was Danes born 1921-1985 and aged 30-85 years, who were followed up for mortality from 1991 to 2015. We included 678,465 natural cause mortality cases and selected five age, sex and calendar time matched controls to each case from the study base. We retrieved the address history of the study population from Danish registries and assessed five-year average concentrations of eight PM2.5 components using deterministic Chemistry-Transport Models air pollution models. We estimated mortality rate ratios (MRRs) by conditional logistic regression and adjusted for socio-demographical factors at individual and neighborhood level. RESULTS: Single pollutant models showed the strongest associations between natural cause mortality and an interquartile increase in sulfate particles (SO4--) (MRR: 1.123; 95 % CI: 1.100-1.147 per 1.5 µg/m3) and secondary organic aerosol (SOA) (MRR: 1.054; 95 % CI: 1.048-1.061 per 0.050 µg/m3). Two-pollutant models showed robust associations between SO4-- and SOA and natural cause mortality. Elemental carbon and mineral dust showed robust associations with higher respiratory and lung cancer mortality. CONCLUSION: This nation-wide study found robust associations between natural cause mortality and SO4-- particles and SOA, which is in line with the results of previous studies. Elemental carbon and mineral dust showed robust associations with higher respiratory and lung cancer mortality.


Subject(s)
Air Pollutants , Air Pollution , Lung Neoplasms , Humans , Air Pollutants/adverse effects , Air Pollutants/analysis , Respiratory Aerosols and Droplets , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Dust , Environmental Exposure/adverse effects
18.
Environ Res ; 220: 115179, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36584852

ABSTRACT

BACKGROUND: Air pollution is a well-recognized risk factor for cardiovascular disease. However, the mechanistic pathways underlying the association are not completely understood. Hence, further studies are required to shed light on potential mechanisms, through which air pollution may affect the development from subclinical to clinical cardiovascular disease. OBJECTIVES: To investigate associations between short-term exposure to air pollution and high-density lipoprotein (HDL), non-high density lipoprotein (non-HDL), systolic and diastolic blood pressure. METHODS: The study was conducted among 32,851 Danes from the Diet, Cancer and Health - Next Generations cohort, who had a blood sample taken and blood pressure measured. We measured HDL and non-HDL in the blood samples. We modelled exposure to fine particulate matter (PM2.5), ultrafine particles (UFP), elemental carbon (EC) and nitrogen dioxide (NO2) in time-windows from 24 h up to 90 days before blood sampling. Pollutants were modelled as total air pollution from all sources, and apportioned into contributions from non-traffic and traffic sources. We analyzed data using linear and logistic regression, with adjustment for socio-economic and lifestyle factors. RESULTS: Air pollution exposure over 24 h to 30 days was generally adversely associated with lipid profile and blood pressure, e.g. for 30-day UFP-exposure, adjusted ß-estimates were: -0.025 (-0.043; -0.006) for HDL, 0.086 (0.042; 0.130) for non-HDL, 2.45 (1.70; 3.11) for systolic and 1.56 (1.07; 20.4) for diastolic blood pressure, per 10,000 particles/cm3. The strongest associations were found for the non-traffic components of air pollution, and among those who were overweight/obese. DISCUSSION: In this large study of air pollution and lipid levels and blood pressure, we found that 24-h to 30-day PM2.5, UFP, EC and NO2 concentrations were generally adversely associated with lipid profile and blood pressure, two important cardiovascular risk factors. The study suggests potential pathways, through which air pollution could affect the development of cardiovascular disease.


Subject(s)
Air Pollutants , Air Pollution , Cardiovascular Diseases , Humans , Adult , Air Pollutants/toxicity , Air Pollutants/analysis , Nitrogen Dioxide/toxicity , Nitrogen Dioxide/analysis , Blood Pressure , Cardiovascular Diseases/chemically induced , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/toxicity , Particulate Matter/analysis , Lipids , Environmental Exposure
19.
Environ Res ; 216(Pt 3): 114740, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36356668

ABSTRACT

Air pollution with particulate matter is an established lung carcinogen. Studies have suggested an association with breast cancer, but the evidence is inconsistent. METHODS: From nationwide registers, we identified all breast cancer cases (n = 55 745) in Denmark between 2000 and 2014. We matched one control for each case on age and year of birth. We used a multi-scale dispersion model to estimate outdoor concentrations of particulate matter <2.5 µm (PM2.5), elemental carbon (EC) and nitrogen dioxide (NO2) as time-weighted average over all addresses up to 20 years prior to diagnosis. We calculated odds ratios (OR) and 95% confidence intervals (CI) by conditional logistic regression with adjustment for marital status, educational level, occupational status, personal income, region of origin, medication and area-level socio-economic indicators. RESULTS: A 10 µg/m3 higher PM2.5 was associated with an OR for breast cancer of 1.21 (95% CI: 1.11-1.33). The corresponding ORs for EC (per 1 µg/m3) and NO2 (per 10 µg/m3) were 1.03 (95% CI: 1.00-1.07) and 1.03 (95% CI: 1.01-1.06), respectively. In multi-pollutant models, the OR for PM2.5 changed only little, whereas ORs for EC or NO2 approached the null. In an analysis of persons below 55 years, PM2.5 was associated with an OR of 1.32 (95% CI: 1.09-1.60) per 10 µg/m3 increase. CONCLUSION: We found evidence of an association between the investigated air pollutants and breast cancer, especially PM2.5. There were indications that the association differed by age at diagnosis. We were not able to include all potential confounders and thus, results should be interpreted with caution.


Subject(s)
Air Pollutants , Air Pollution , Breast Neoplasms , Female , Humans , Air Pollutants/toxicity , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Breast Neoplasms/chemically induced , Breast Neoplasms/epidemiology , Carbon/analysis , Case-Control Studies , Denmark/epidemiology , Environmental Exposure/analysis , Nitrogen Dioxide/analysis , Particulate Matter/analysis
20.
Environ Int ; 170: 107570, 2022 12.
Article in English | MEDLINE | ID: mdl-36334460

ABSTRACT

OBJECTIVE: Air pollution, road traffic noise and lack of greenness coexist in urban environments and have all been associated with type 2 diabetes. We aimed to investigate how these co-exposures were associated with type 2 diabetes in a multi-exposure perspective. METHODS: We estimated 5-year residential mean exposure to fine particles (PM2.5), ultrafine particles (UFP), elemental carbon (EC), nitrogen dioxide (NO2) and road traffic noise at the most (LdenMax) and least (LdenMin) exposed facade for all persons aged > 50 years living in Denmark in 2005 to 2017. For each air pollutant, we estimated total concentrations and traffic contributions. Based on land use maps, we estimated proportion of green and non-green space within 150 and 1000 m of all residences. In total, 1.9 million persons were included and 128,358 developed type 2 diabetes during follow-up. We performed analyses using Cox proportional hazards models, with adjustment for individual and neighborhood-level sociodemographic co-variates. RESULTS: In single-pollutant models, all air pollutants, noise and lack of green space were associated with higher risk of diabetes. In two-, three- and four-pollutant analyses of the air pollutants, only UFP and NO2 remained associated with higher diabetes risk in all models. LdenMax, LdenMin and the two proxies of green space remained associated with diabetes in two-pollutant models of, respectively, noise and green space. In a multi-pollutant analysis, we found hazard ratios (95 % confidence intervals) per interquartile range of 1.021 (1.005; 1.038) for UFP, 1.012 (0.996; 1.028) for NO2, 1.022 (1.012; 1.033) for LdenMin, 1.013 (1.004; 1.022) for LdenMax, and 1.038 (1.031; 1.044) and 1.018 (1.010; 1.025) for lack of green space within, respectively, 150 m and 1000 m, and a cumulative risk index of 1.131 (1.113; 1.149). CONCLUSIONS: Air pollution, road traffic noise and lack of green space were independently associated with higher risk of type 2 diabetes.


Subject(s)
Air Pollutants , Air Pollution , Diabetes Mellitus, Type 2 , Humans , Prospective Studies , Diabetes Mellitus, Type 2/epidemiology , Air Pollution/adverse effects , Air Pollutants/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...