Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Clin Proteomics ; 21(1): 23, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481131

ABSTRACT

BACKGROUND: Human tear protein biomarkers are useful for detecting ocular and systemic diseases. Unfortunately, existing tear film sampling methods (Schirmer strip; SS and microcapillary tube; MCT) have significant drawbacks, such as pain, risk of injury, sampling difficulty, and proteomic disparities between methods. Here, we present an alternative tear protein sampling method using soft contact lenses (SCLs). RESULTS: We optimized the SCL protein sampling in vitro and performed in vivo studies in 6 subjects. Using Etafilcon A SCLs and 4M guanidine-HCl for protein removal, we sampled an average of 60 ± 31 µg of protein per eye. We also performed objective and subjective assessments of all sampling methods. Signs of irritation post-sampling were observed with SS but not with MCT and SCLs. Proteomic analysis by mass spectrometry (MS) revealed that all sampling methods resulted in the detection of abundant tear proteins. However, smaller subsets of unique and shared proteins were identified, particularly for SS and MCT. Additionally, there was no significant intrasubject variation between MCT and SCL sampling. CONCLUSIONS: These experiments demonstrate that SCLs are an accessible tear-sampling method with the potential to surpass current methods in sampling basal tears.

2.
Lab Chip ; 24(8): 2202-2207, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38525691

ABSTRACT

In this work, we present a new 3D printing technique that enables the realization of native digital micro-mirror device (DMD) resolution in negative features of a 3D printed part without improving 3D printer hardware and demonstrate the fabrication of fully integrated, biocompatible isoporous membranes with pore sizes as small as 7 µm. We utilize this technique to construct a microfluidic device that mimics an established organ-on-a-chip configuration, including an integrated isoporous membrane. Two cell populations are seeded on either side of the membrane and imaged as a proof of concept for other organ-on-a-chip applications. These 3D printed isoporous membranes can be leveraged for a wide variety of other mechanical and biological applications, creating new possibilities for seamlessly integrated, 3D printed microfluidic devices.


Subject(s)
Lab-On-A-Chip Devices , Printing, Three-Dimensional
3.
J Vis Exp ; (203)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38314910

ABSTRACT

Glucose metabolism is critical for the African trypanosome, Trypanosoma brucei, as an essential metabolic process and regulator of parasite development. Little is known about the cellular responses generated when environmental glucose levels change. In both bloodstream and procyclic form (insect stage) parasites, glycosomes house most of glycolysis. These organelles are rapidly acidified in response to glucose deprivation, which likely results in the allosteric regulation of glycolytic enzymes such as hexokinase. In previous work, localizing the chemical probe used to make pH measurements was challenging, limiting its utility in other applications. This paper describes the development and use of parasites that express glycosomally localized pHluorin2, a heritable protein pH biosensor. pHluorin2 is a ratiometric pHluorin variant that displays a pH (acid)-dependent decrease in excitation at 395 nm while simultaneously yielding an increase in excitation at 475 nm. Transgenic parasites were generated by cloning the pHluorin2 open reading frame into the trypanosome expression vector pLEW100v5, enabling inducible protein expression in either lifecycle stage. Immunofluorescence was used to confirm the glycosomal localization of the pHluorin2 biosensor, comparing the localization of the biosensor to the glycosomal resident protein aldolase. The sensor responsiveness was calibrated at differing pH levels by incubating cells in a series of buffers that ranged in pH from 4 to 8, an approach we have previously used to calibrate a fluorescein-based pH sensor. We then measured pHluorin2 fluorescence at 405 nm and 488 nm using flow cytometry to determine glycosomal pH. We validated the performance of the live transgenic pHluorin2-expressing parasites, monitoring pH over time in response to glucose deprivation, a known trigger of glycosomal acidification in PF parasites. This tool has a range of potential applications, including potentially being used in high-throughput drug screening. Beyond glycosomal pH, the sensor could be adapted to other organelles or used in other trypanosomatids to understand pH dynamics in the live cell setting.


Subject(s)
Trypanosoma brucei brucei , Animals , Trypanosoma brucei brucei/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Glucose/metabolism , Microbodies/metabolism , Animals, Genetically Modified , Hydrogen-Ion Concentration
4.
Micromachines (Basel) ; 14(8)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37630125

ABSTRACT

We demonstrate a method to effectively 3D print microfluidic devices with high-resolution features using a biocompatible resin based on avobenzone as the UV absorber. Our method relies on spectrally shaping the 3D printer source spectrum so that it is fully overlapped by avobenzone's absorption spectrum. Complete overlap is essential to effectively limit the optical penetration depth, which is required to achieve high out-of-plane resolution. We demonstrate the high resolution in practice by 3D printing 15 µm square pillars in a microfluidic chamber, where the pillars are separated by 7.7 µm and are printed with 5 µm layers. Furthermore, we show reliable membrane valves and pumps using the biocompatible resin. Valves are tested to 1,000,000 actuations with no observable degradation in performance. Finally, we create a concentration gradient generation (CG) component and utilize it in two device designs for cell chemotaxis studies. The first design relies on an external dual syringe pump to generate source and sink flows to supply the CG channel, while the second is a complete integrated device incorporating on-chip pumps, valves, and reservoirs. Both device types are seeded with adherent cells that are subjected to a chemoattractant CG, and both show clear evidence of chemotactic cellular migration. Moreover, the integrated device demonstrates cellular migration comparable to the external syringe pump device. This demonstration illustrates the effectiveness of our integrated chemotactic assay approach and high-resolution biocompatible resin 3D printing fabrication process. In addition, our 3D printing process has been tuned for rapid fabrication, as printing times for the two device designs are, respectively, 8 and 15 min.

5.
Biomaterials ; 283: 121464, 2022 04.
Article in English | MEDLINE | ID: mdl-35306229

ABSTRACT

Micropatterned suspension culture creates consistently sized and shaped cell aggregates but has not produced organotypic structures from stable cells, thus restricting its use in accurate disease modeling. Here, we show that organotypic structure is achieved in hybrid suspension culture via supplementation of soluble extracellular matrix (ECM). We created a viable lung organoid from epithelial, endothelial, and fibroblast human stable cell lines in suspension culture. We demonstrate the importance of soluble ECM in organotypic patterning with the emergence of lumen-like structures with airspace showing feasible gas exchange units, formation of branching, perfusable vasculature, and long-term 70-day maintenance of lumen structure. Our results show a dependent relationship between enhanced fibronectin fibril assembly and the incorporation of ECM in the organoid. We successfully applied this technology in modeling lung fibrosis via bleomycin induction and test a potential antifibrotic drug in vitro while maintaining fundamental cell-cell interactions in lung tissue. Our human fluorescent lung organoid (hFLO) model represents features of pulmonary fibrosis which were ameliorated by fasudil treatment. We also demonstrate a 3D culture method with potential of creating organoids from mature cells, thus opening avenues for disease modeling and regenerative medicine, enhancing understanding of lung cell biology in health and lung disease.


Subject(s)
Extracellular Matrix , Pulmonary Fibrosis , Extracellular Matrix/metabolism , Fibroblasts , Humans , Lung , Organoids
6.
Angiogenesis ; 25(3): 397-410, 2022 08.
Article in English | MEDLINE | ID: mdl-35212873

ABSTRACT

Anthrax protective antigen (PA) is a potent inhibitor of pathological angiogenesis with an unknown mechanism. In anthrax intoxication, PA interacts with capillary morphogenesis gene 2 (CMG2) and tumor endothelial marker 8 (TEM8). Here, we show that CMG2 mediates the antiangiogenic effects of PA and is required for growth-factor-induced chemotaxis. Using specific inhibitors of CMG2 and TEM8 interaction with natural ligand, as well as mice with the CMG2 or TEM8 transmembrane and intracellular domains disrupted, we demonstrate that inhibiting CMG2, but not TEM8 reduces growth-factor-induced angiogenesis in the cornea. Furthermore, the antiangiogenic effect of PA was abolished when the CMG2, but not the TEM8, gene was disrupted. Binding experiments demonstrated a broad ligand specificity for CMG2 among extracellular matrix (ECM) proteins. Ex vivo experiments demonstrated that CMG2 (but not TEM8) is required for PA activity in human dermal microvascular endothelial cell (HMVEC-d) network formation assays. Remarkably, blocking CMG2-ligand binding with PA or CRISPR knockout abolishes endothelial cell chemotaxis but not chemokinesis in microfluidic migration assays. These effects are phenocopied by Rho inhibition. Because CMG2 mediates the chemotactic response of endothelial cells to peptide growth factors in an ECM-dependent fashion, CMG2 is well-placed to integrate growth factor and ECM signals. Thus, CMG2 targeting is a novel way to inhibit angiogenesis.


Subject(s)
Chemotaxis , Endothelial Cells , Neovascularization, Pathologic , Receptors, Peptide , Animals , Endothelial Cells/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Ligands , Mice , Receptors, Peptide/genetics , Receptors, Peptide/metabolism
7.
Nat Commun ; 12(1): 5337, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34504101

ABSTRACT

TNK1 is a non-receptor tyrosine kinase with poorly understood biological function and regulation. Here, we identify TNK1 dependencies in primary human cancers. We also discover a MARK-mediated phosphorylation on TNK1 at S502 that promotes an interaction between TNK1 and 14-3-3, which sequesters TNK1 and inhibits its kinase activity. Conversely, the release of TNK1 from 14-3-3 allows TNK1 to cluster in ubiquitin-rich puncta and become active. Active TNK1 induces growth factor-independent proliferation of lymphoid cells in cell culture and mouse models. One unusual feature of TNK1 is a ubiquitin-association domain (UBA) on its C-terminus. Here, we characterize the TNK1 UBA, which has high affinity for poly-ubiquitin. Point mutations that disrupt ubiquitin binding inhibit TNK1 activity. These data suggest a mechanism in which TNK1 toggles between 14-3-3-bound (inactive) and ubiquitin-bound (active) states. Finally, we identify a TNK1 inhibitor, TP-5801, which shows nanomolar potency against TNK1-transformed cells and suppresses tumor growth in vivo.


Subject(s)
14-3-3 Proteins/genetics , Fetal Proteins/genetics , Lymphocytes/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Protein-Tyrosine Kinases/genetics , Ubiquitin/genetics , 14-3-3 Proteins/metabolism , A549 Cells , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Fetal Proteins/antagonists & inhibitors , Fetal Proteins/metabolism , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Lymphocytes/drug effects , Lymphocytes/pathology , Mice , Phospholipase C gamma/genetics , Phospholipase C gamma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Binding , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Pyrimidines/pharmacology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Signal Transduction , Survival Analysis , Tumor Burden/drug effects , Ubiquitin/metabolism , Xenograft Model Antitumor Assays
8.
Nat Commun ; 12(1): 5509, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535656

ABSTRACT

Traditional 3D printing based on Digital Light Processing Stereolithography (DLP-SL) is unnecessarily limiting as applied to microfluidic device fabrication, especially for high-resolution features. This limitation is due primarily to inherent tradeoffs between layer thickness, exposure time, material strength, and optical penetration that can be impossible to satisfy for microfluidic features. We introduce a generalized 3D printing process that significantly expands the accessible spatially distributed optical dose parameter space to enable the fabrication of much higher resolution 3D components without increasing the resolution of the 3D printer. Here we demonstrate component miniaturization in conjunction with a high degree of integration, including 15 µm × 15 µm valves and a 2.2 mm × 1.1 mm 10-stage 2-fold serial diluter. These results illustrate our approach's promise to enable highly functional and compact microfluidic devices for a wide variety of biomolecular applications.


Subject(s)
Microfluidics , Miniaturization , Optics and Photonics , Printing, Three-Dimensional , Membranes , Pressure , X-Ray Microtomography
9.
Nature ; 596(7870): 114-118, 2021 08.
Article in English | MEDLINE | ID: mdl-34262174

ABSTRACT

Pathogenic fungi reside in the intestinal microbiota but rarely cause disease. Little is known about the interactions between fungi and the immune system that promote commensalism. Here we investigate the role of adaptive immunity in promoting mutual interactions between fungi and host. We find that potentially pathogenic Candida species induce and are targeted by intestinal immunoglobulin A (IgA) responses. Focused studies on Candida albicans reveal that the pathogenic hyphal morphotype, which is specialized for adhesion and invasion, is preferentially targeted and suppressed by intestinal IgA responses. IgA from mice and humans directly targets hyphal-enriched cell-surface adhesins. Although typically required for pathogenesis, C. albicans hyphae are less fit for gut colonization1,2 and we show that immune selection against hyphae improves the competitive fitness of C. albicans. C. albicans exacerbates intestinal colitis3 and we demonstrate that hyphae and an IgA-targeted adhesin exacerbate intestinal damage. Finally, using a clinically relevant vaccine to induce an adhesin-specific immune response protects mice from C. albicans-associated damage during colitis. Together, our findings show that adaptive immunity suppresses harmful fungal effectors, with benefits to both C. albicans and its host. Thus, IgA uniquely uncouples colonization from pathogenesis in commensal fungi to promote homeostasis.


Subject(s)
Adaptive Immunity , Candida albicans/immunology , Candida albicans/physiology , Host-Pathogen Interactions/immunology , Symbiosis/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antigens, Fungal/immunology , Candida albicans/pathogenicity , Colitis/immunology , Colitis/microbiology , Colitis/pathology , Female , Fungal Vaccines/immunology , Gastrointestinal Microbiome/immunology , Humans , Hyphae/immunology , Immunoglobulin A/immunology , Male , Mice , Middle Aged , Young Adult
10.
ACS Appl Bio Mater ; 3(4): 2239-2244, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32467881

ABSTRACT

We report a non-cytotoxic resin compatible with and designed for use in custom high-resolution 3D printers that follow the design approach described in Gong et al., Lab Chip 17, 2899 (2017). The non-cytotoxic resin is based on a poly(ethylene glycol) diacrylate (PEGDA) monomer with avobenzone as the UV absorber instead of 2-nitrophenyl phenyl sulfide (NPS). Both NPS-PEGDA and avobenzone-PEGDA (A-PEGDA) resins were evaluated for cytotoxicity and cell adhesion. We show that NPS-PEGDA can be made effectively non-cytotoxic with a post-print 12-hour ethanol wash, and that A-PEGDA, as-printed, is effectively non-cytotoxic. 3D prints made with either resin do not support strong cell adhesion in their as-printed state; however, cell adhesion increases dramatically with a short plasma treatment. Using A-PEGDA, we demonstrate spheroid formation in ultra-low adhesion 3D printed wells, and cell migration from spheroids on plasma-treated adherent surfaces. Given that A-PEGDA can be 3D printed with high resolution, it has significant promise for a wide variety of cell-based applications using 3D printed microfluidic structures.

11.
ACS Chem Biol ; 15(2): 587-596, 2020 02 21.
Article in English | MEDLINE | ID: mdl-32003961

ABSTRACT

Capillary Morphogenesis Gene 2 protein (CMG2) is a transmembrane, integrin-like receptor and the primary receptor for the anthrax toxin. CMG2 also plays a role in angiogenic processes. However, the molecular mechanism that mediates the observed CMG2-related angiogenic effects is not fully elucidated. Previous studies have reported that CMG2 binds type IV collagen (Col-IV), a vital component of the vascular basement membrane, as well as other ECM proteins. Here, we further characterize the interaction between CMG2 and individual peptides from Col-IV and explore the effects of this interaction on angiogenesis. Using a peptide array, we observed that CMG2 preferentially binds peptide fragments of the NC1 (noncollagenous domain 1) domains of Col-IV. These domains are also known as the fragments arresten (from the α1 chain) and canstatin (from the α2 chain) and have documented antiangiogenic properties. A second peptide array was probed to map a putative peptide-binding epitope onto the Col-IV structure. A top hit from the initial array, a canstatin-derived peptide, binds to the CMG2 ligand-binding von Willebrand factor A (vWA) domain with a submicromolar affinity (peptide S16, Kd = 400 ± 200 nM). This peptide competes with anthrax protective antigen (PA) for CMG2 binding and does not bind CMG2 in the presence of EDTA. Together these data suggest that, like PA, S16 interacts with CMG2 at the metal-ion dependent adhesion site (MIDAS) of its vWA domain. CMG2 specifically mediates endocytic uptake of S16; both CMG2-/- endothelial cells and WT cells treated with PA show markedly reduced S16 uptake. Furthermore, S16 dramatically reduces directional endothelial cell migration with no impact on cell proliferation. These data demonstrate that this canstatin-derived peptide acts via CMG2 to elicit a marked effect on a critical process required for angiogenesis.


Subject(s)
Collagen Type IV/metabolism , Endocytosis/physiology , Peptide Fragments/metabolism , Receptors, Peptide/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cell Line, Tumor , Cell Movement/drug effects , Endothelial Cells/metabolism , Humans , Mice , Protein Binding , Protein Domains , Receptors, Peptide/chemistry
12.
Front Immunol ; 11: 561889, 2020.
Article in English | MEDLINE | ID: mdl-33542711

ABSTRACT

CD4+ T cells are crucial for effective repression and elimination of cancer cells. Despite a paucity of CD4+ T cell receptor (TCR) clinical studies, CD4+ T cells are primed to become important therapeutics as they help circumvent tumor antigen escape and guide multifactorial immune responses. However, because CD8+ T cells directly kill tumor cells, most research has focused on the attributes of CD8+ TCRs. Less is known about how TCR affinity and CD4 expression affect CD4+ T cell activation in full length TCR (flTCR) and TCR single chain signaling (TCR-SCS) formats. Here, we generated an affinity panel of TCRs from CD4+ T cells and expressed them in flTCR and three TCR-SCS formats modeled after chimeric antigen receptors (CARs) to understand the contributions of TCR-pMHCII affinity, TCR format, and coreceptor CD4 interactions on CD4+ T cell activation. Strikingly, the coreceptor CD4 inhibited intermediate and high affinity TCR-construct activation by Lck-dependent and -independent mechanisms. These inhibition mechanisms had unique affinity thresholds dependent on the TCR format. Intracellular construct formats affected the tetramer staining for each TCR as well as IL-2 production. IL-2 production was promoted by increased TCR-pMHCII affinity and the flTCR format. Thus, CD4+ T cell therapy development should consider TCR affinity, CD4 expression, and construct format.


Subject(s)
CD4 Antigens/metabolism , Lymphocyte Activation , Models, Immunological , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, Chimeric Antigen/immunology , Signal Transduction/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Antigens, Neoplasm/immunology , Histocompatibility Antigens Class II/immunology , Hybridomas , Immunotherapy, Adoptive/methods , Interleukin-2/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Chimeric Antigen/genetics , Transduction, Genetic , Yeasts/immunology
13.
J Med Chem ; 62(8): 3958-3970, 2019 04 25.
Article in English | MEDLINE | ID: mdl-30964669

ABSTRACT

We previously showed that a small molecule of natural origin, 1,2,3,4,6-penta- O-galloyl-ß-d-glucopyranose (PGG), binds to capillary morphogenesis gene 2 (CMG2) with a submicromolar IC50 and also has antiangiogenic activity in vitro and in vivo. In this work, we synthetized derivatives of PGG with different sugar cores and phenolic substituents and tested these as angiogenesis inhibitors. In a high-throughput Förster resonant energy transfer-based binding assay, we found that one of our synthetic analogues (1,2,3,4,6-penta- O-galloyl-ß-d-mannopyranose (PGM)), with mannose as central core and galloyl substituents, exhibit higher (up to 10×) affinity for CMG2 than the natural glucose prototype PGG and proved to be a potent angiogenesis inhibitor. These findings demonstrate that biochemical CMG2 binding in vitro predicts inhibition of endothelial cell migration ex vivo and antiangiogenic activity in vivo. The molecules herein described, and in particular PGM, might be useful prototypes for the development of novel agents for angiogenesis-dependent diseases, including blinding eye disease and cancer.


Subject(s)
Angiogenesis Inhibitors/chemistry , Hydrolyzable Tannins/chemistry , Receptors, Peptide/metabolism , Angiogenesis Inhibitors/metabolism , Angiogenesis Inhibitors/pharmacology , Animals , Hydrolyzable Tannins/metabolism , Hydrolyzable Tannins/pharmacology , Mannose/analogs & derivatives , Mannose/metabolism , Mannose/pharmacology , Mice , Mice, Inbred C57BL , Neovascularization, Physiologic/drug effects , Protein Binding , Receptors, Peptide/chemistry , Structure-Activity Relationship
14.
Biochemistry ; 58(7): 875-882, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30638014

ABSTRACT

The African trypanosome, Trypanosoma brucei, is the causative agent of human African trypanosomiasis (HAT). African trypanosomes are extracellular parasites that possess a single flagellum that imparts a high degree of motility to the microorganisms. In addition, African trypanosomes show significant metabolic and structural adaptation to environmental conditions. Analysis of the ways that environmental cues affect these organisms generally requires rapid perfusion experiments in combination with single-cell imaging, which are difficult to apply under conditions of rapid motion. Microfluidic devices have been used previously as a strategy for trapping small motile cells in a variety of organisms, including trypanosomes; however, in the past, such devices required individual fabrication in a cleanroom, limiting their application. Here we demonstrate that a commercial microfluidic device, typically used for bacterial trapping, can trap bloodstream and procyclic form trypanosomes, allowing for rapid buffer exchange via perfusion. As a result, time-lapse single-cell microscopy images of these highly motile parasites were acquired during environmental variations. Using these devices, we have been able to perform and analyze perfusion-based single-cell tracking experiments of the responses of the parasite to changes in glucose availability, which is a major step in resolving the mechanisms of adaptation of kinetoplasts to their individual biological niches; we demonstrate utility of this tool for making measurements of procyclic form trypanosome intracellular glucose levels as a function of changes in extracellular glucose concentrations. These experiments demonstrate that cytosolic glucose equilibrates with external conditions as fast as, or faster than, the rate of solution exchange in the instrument.


Subject(s)
Lab-On-A-Chip Devices , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Trypanosoma brucei brucei/physiology , Fluorescein , Glucose/metabolism , Single-Cell Analysis , Time-Lapse Imaging/instrumentation , Time-Lapse Imaging/methods , Trypanosoma brucei brucei/cytology
15.
RSC Adv ; 9(16): 8759-8767, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-35517661

ABSTRACT

A series of eight new ethyl (Z)-benzotriazolyl acrylates 6a-d and 7a-d have been synthesized by conventional heating and microwave irradiation from ethyl benzotriazolyl acetates 3 and 4 with the corresponding aromatic aldehydes. This work reports the synthetic approach and spectroscopic characterization (1H, 13C-NMR, HRMS) of all the synthesized compounds. X-ray diffraction analyses were performed for molecules 6a, 7a and 7d. Photophysical properties of compounds were evaluated. Finally, compound 6a was tested in a human cell line and showed low to no cytotoxicity at relevant concentrations. Initial testing demonstrates its potential use as a fluid-phase fluorescent marker for live cell imaging.

16.
PLoS Negl Trop Dis ; 12(5): e0006523, 2018 05.
Article in English | MEDLINE | ID: mdl-29851949

ABSTRACT

The bloodstream lifecycle stage of the kinetoplastid parasite Trypanosoma brucei relies solely on glucose metabolism for ATP production, which occurs in peroxisome-like organelles (glycosomes). Many studies have been conducted on glucose uptake and metabolism, but none thus far have been able to monitor changes in cellular and organellar glucose concentration in live parasites. We have developed a non-destructive technique for monitoring changes in cytosolic and glycosomal glucose levels in T. brucei using a fluorescent protein biosensor (FLII12Pglu-700µÎ´6) in combination with flow cytometry. T. brucei parasites harboring the biosensor allowed for observation of cytosolic glucose levels. Appending a type 1 peroxisomal targeting sequence caused biosensors to localize to glycosomes, which enabled observation of glycosomal glucose levels. Using this approach, we investigated cytosolic and glycosomal glucose levels in response to changes in external glucose or 2-deoxyglucose concentration. These data show that procyclic form and bloodstream form parasites maintain different glucose concentrations in their cytosol and glycosomes. In procyclic form parasites, the cytosol and glycosomes maintain indistinguishable glucose levels (3.4 ± 0.4mM and 3.4 ± 0.5mM glucose respectively) at a 6.25mM external glucose concentration. In contrast, bloodstream form parasites maintain glycosomal glucose levels that are ~1.8-fold higher than the surrounding cytosol, equating to 1.9 ± 0.6mM in cytosol and 3.5 ± 0.5mM in glycosomes. While the mechanisms of glucose transport operating in the glycosomes of bloodstream form T. brucei remain unresolved, the methods described here will provide a means to begin to dissect the cellular machinery required for subcellular distribution of this critical hexose.


Subject(s)
Flow Cytometry/methods , Fluorescence Resonance Energy Transfer/methods , Glucose/metabolism , Life Cycle Stages , Microbodies/metabolism , Trypanosoma brucei brucei/physiology , Animals , Biological Transport , Biosensing Techniques/methods , Cytosol/metabolism , Microbodies/chemistry , Protozoan Proteins/metabolism
17.
ACS Infect Dis ; 4(7): 1058-1066, 2018 07 13.
Article in English | MEDLINE | ID: mdl-29741365

ABSTRACT

Trypanosoma brucei, which causes human African typanosomiasis (HAT), derives cellular ATP from glucose metabolism while in the mammalian host. Targeting glucose uptake or regulation in the parasite has been proposed as a potential therapeutic strategy. However, few methods have been described to identify and characterize potential inhibitors of glucose uptake and regulation. Here, we report development of a screening assay that identifies small molecule disrupters of glucose levels in the cytosol and glycosomes. Using an endogenously expressed fluorescent protein glucose sensor expressed in cytosol or glycosomes, we monitored intracellular glucose depletion in the different cellular compartments. Two glucose level disrupters were identified, one of which only exhibited inhibition of glycosomal glucose and did not affect cytosolic levels. In addition to inhibiting glucose uptake with relatively high potency (EC50 = 700 nM), the compound also showed modest bloodstream form parasite killing activity. Expanding this assay will allow for identification of candidate compounds that disrupt parasite glucose metabolism.


Subject(s)
Carbohydrate Metabolism/drug effects , Flow Cytometry , Fluorescence Resonance Energy Transfer , Glucose/metabolism , High-Throughput Screening Assays , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/metabolism , Biosensing Techniques , Dose-Response Relationship, Drug , Drug Discovery , Reproducibility of Results , Small Molecule Libraries , Trypanocidal Agents/chemistry
18.
Chem Commun (Camb) ; 53(62): 8735-8738, 2017 Aug 11.
Article in English | MEDLINE | ID: mdl-28726862

ABSTRACT

A new drug delivery strategy was investigated for the development of potent anti-parasitic compounds against Trypanosoma brucei, the causative agent of African sleeping sickness. Thus, potent in vitro hexokinase inhibitors were rendered cytotoxic by appending a tripeptide peroxosomal targeting sequence that facilitated delivery of the molecular cargo to the appropriate organelle in the parasite.

19.
J Biol Chem ; 292(19): 7795-7805, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28348078

ABSTRACT

Here we report the use of a fluorescein-tagged peroxisomal targeting sequence peptide (F-PTS1, acetyl-C{K(FITC)}GGAKL) for investigating pH regulation of glycosomes in live procyclic form Trypanosoma brucei When added to cells, this fluorescent peptide is internalized within vesicular structures, including glycosomes, and can be visualized after 30-60 min. Using F-PTS1 we are able to observe the pH conditions inside glycosomes in response to starvation conditions. Previous studies have shown that in the absence of glucose, the glycosome exhibits mild acidification from pH 7.4 ± 0.2 to 6.8 ± 0.2. Our results suggest that this response occurs under proline starvation as well. This pH regulation is found to be independent from cytosolic pH and requires a source of Na+ ions. Glycosomes were also observed to be more resistant to external pH changes than the cytosol; placement of cells in acidic buffers (pH 5) reduced the pH of the cytosol by 0.8 ± 0.1 pH units, whereas glycosomal pH decreases by 0.5 ± 0.1 pH units. This observation suggests that regulation of glycosomal pH is different and independent from cytosolic pH regulation. Furthermore, pH regulation is likely to work by an active process, because cells depleted of ATP with 2-deoxyglucose and sodium azide were unable to properly regulate pH. Finally, inhibitor studies with bafilomycin and EIPA suggest that both V-ATPases and Na+/H+ exchangers are required for glycosomal pH regulation.


Subject(s)
Microbodies/chemistry , Trypanosoma brucei brucei/chemistry , Adenosine Triphosphate/chemistry , Amiloride/analogs & derivatives , Amiloride/chemistry , Animals , Cytosol/chemistry , Deoxyglucose/chemistry , Digitonin/chemistry , Glucose/chemistry , Homeostasis , Hydrogen-Ion Concentration , Macrolides/chemistry , Microscopy, Fluorescence , Potassium/chemistry , Proline/chemistry , Protein Domains , Protozoan Proteins/chemistry , Sodium Azide/chemistry
20.
Anal Biochem ; 458: 43-8, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24755004

ABSTRACT

Silver nanoparticles have been modified with self-assembled monolayers of hydroxyl-terminated long chain thiols and encapsulated with a silica shell. The resulting core-shell nanoparticles were used as optical labels for cell analysis using flow cytometry and microscopy. The excitation of plasmon resonances in nanoparticles results in strong depolarized scattering of visible light, permitting detection at the single nanoparticle level. The nanoparticles were modified with neutravidin via epoxide-azide coupling chemistry, to which biotinylated antibodies targeting cell surface receptors were bound. The nanoparticle labels exhibited long-term stability in solutions with high salt concentrations without aggregation or silver etching. Labeled cells exhibited two orders of magnitude enhancement of the scattering intensity compared with unlabeled cells.


Subject(s)
Flow Cytometry , Metal Nanoparticles/chemistry , Silver/chemistry , Animals , Antibodies/immunology , Antibodies, Immobilized/immunology , Avidin/chemistry , Cell Line , Immobilized Proteins/chemistry , Immobilized Proteins/metabolism , Light , Macrophages/chemistry , Macrophages/cytology , Mice , Receptors, Cell Surface/immunology , Scattering, Radiation , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...