Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(6)2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36981221

ABSTRACT

This paper explores the transformation of biowastes from food industry and agriculture into high-value products through four examples. The objective is to provide insight into the principles of green transition and a circular economy. The first two case studies focus on the waste generated from the production of widely consumed food items, such as beer and coffee, while the other two examine the potential of underutilized plants, such as burdock and willow, as sources of valuable compounds. Phenolic compounds are the main target in the case of brewer's spent grain, with p-coumaric acid and ferulic acid being the most common. Lipids are a possible target in the case of spent coffee grounds with palmitic (C16:0) and linoleic (C18:2) acid being the major fatty acids among those recovered. In the case of burdock, different targets are reported based on which part of the plant is used. Extracts rich in linoleic and oleic acids are expected from the seeds, while the roots extracts are rich in sugars, phenolic acids such as chlorogenic, caffeic, o-coumaric, syringic, cinnamic, gentisitic, etc. acids, and, interestingly, the high-value compound epicatechin gallate. Willow is well known for being rich in salicin, but picein, (+)-catechin, triandrin, glucose, and fructose are also obtained from the extracts. The study thoroughly analyzes different extraction methods, with a particular emphasis on cutting-edge green technologies. The goal is to promote the sustainable utilization of biowaste and support the green transition to a more environmentally conscious economy.

2.
Bioresour Technol ; 243: 366-374, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28683390

ABSTRACT

The identification of the influence of the reaction parameters is of paramount importance when defining a process design. In this work, non-edible castor oil was reacted with methanol to produce a possible component for biodiesel blends, using liquid enzymes as the catalyst. Temperature, alcohol-to-oil molar ratio, enzyme and added water contents were the reaction parameters evaluated in the transesterification reactions. The optimal conditions, giving the optimal final FAME yield and FFA content in the methyl ester-phase was identified. At 35°C, 6.0 methanol-to-oil molar ratio, 5wt% of enzyme and 5wt% of water contents, 94% of FAME yield and 6.1% of FFA in the final composition were obtained. The investigation was completed with the analysis of the component profiles, showing that at least 8h are necessary to reach a satisfactory FAME yield together with a minor FFA content.


Subject(s)
Biofuels , Castor Oil , Catalysis , Esterification , Methanol , Plant Oils , Temperature
3.
Bioresour Technol ; 101(14): 5266-74, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20171880

ABSTRACT

Process simulation and economical evaluation of an enzymatic biodiesel production plant has been carried out. Enzymatic biodiesel production from high quality rapeseed oil and methanol has been investigated for solvent free and cosolvent production processes. Several scenarios have been investigated with different production scales (8 and 200 mio. kg biodiesel/year) and enzyme price. The cosolvent production process is found to be most expensive and is not a viable choice, while the solvent free process is viable for the larger scale production of 200 mio. kg biodiesel/year with the current enzyme price. With the suggested enzyme price of the future, both the small and large scale solvent free production proved viable. The product price was estimated to be 0.73-1.49 euro/kg biodiesel with the current enzyme price and 0.05-0.75 euro/kg with the enzyme price of the future for solvent free process.


Subject(s)
Bioelectric Energy Sources , Biofuels/economics , Biotechnology/economics , Biotechnology/methods , Computer Simulation , Costs and Cost Analysis , Fatty Acids, Monounsaturated , Models, Economic , Oils , Plant Oils , Rapeseed Oil , Solvents/chemistry
4.
Biotechnol Bioeng ; 102(5): 1298-315, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19215031

ABSTRACT

Enzymatic biodiesel production has been investigated intensively, but is presently employed industrially only in a 20,000 tons/year pilot plant in China (Du et al. [2008] Appl Microbiol Technol 79(3):331-337). This review presents a critical analysis of the current status of research in this area and accentuates the main obstacles to the widespread use of enzymes for commercial biodiesel transesterification. Improved results for enzymatic catalysis are seen with respect to increased yield, reaction time and stability, but the performance and price of the enzymes need further advances for them to become attractive industrially for biodiesel production. Critical aspects such as mass transfer limitations, use of solvents and water activity are discussed together with process considerations and evaluation of possible reactor configurations, if industrial production with enzymes is to be carried out. Results of published studies on the productivity of enzymes are also presented and compared to the use of chemical catalysts.


Subject(s)
Biotechnology/methods , Enzymes/metabolism , Gasoline , Research/trends , Biotransformation , China
SELECTION OF CITATIONS
SEARCH DETAIL
...