Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38479791

ABSTRACT

Lactic acid bacteria (LAB) have evolved into fastidious microorganisms that require amino acids from environmental sources. Some LAB have cell envelope proteases (CEPs) that drive the proteolysis of high molecular weight proteins like casein in milk. CEP activity is typically studied using casein as the predominant substrate, even though CEPs can hydrolyze other protein sources. Plant protein hydrolysis by LAB has rarely been connected to the activity of specific CEPs. This study aims to show the activity of individual CEPs using LAB growth in a minimal growth medium supplemented with high molecular weight casein or potato proteins. Using Lactococcus cremoris MG1363 as isogenic background to express CEPs, we demonstrate that CEP activity is directly related to growth in the protein-supplemented minimal growth media. Proteolysis is analyzed based on the amino acid release, allowing a comparison of CEP activities and analysis of amino acid utilization by L. cremoris MG1363. This approach provides a basis to analyze CEP activity on plant-based protein substrates as casein alternatives and to compare activity of CEP homologs.


Subject(s)
Lactococcus lactis , Peptide Hydrolases , Animals , Peptide Hydrolases/metabolism , Caseins/metabolism , Molecular Weight , Endopeptidases/chemistry , Lactococcus lactis/metabolism , Amino Acids/metabolism
2.
Nature ; 626(8000): 737-741, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37879361

ABSTRACT

The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs)1, sources of high-frequency gravitational waves (GWs)2 and likely production sites for heavy-element nucleosynthesis by means of rapid neutron capture (the r-process)3. Here we present observations of the exceptionally bright GRB 230307A. We show that GRB 230307A belongs to the class of long-duration GRBs associated with compact object mergers4-6 and contains a kilonova similar to AT2017gfo, associated with the GW merger GW170817 (refs. 7-12). We obtained James Webb Space Telescope (JWST) mid-infrared imaging and spectroscopy 29 and 61 days after the burst. The spectroscopy shows an emission line at 2.15 microns, which we interpret as tellurium (atomic mass A = 130) and a very red source, emitting most of its light in the mid-infrared owing to the production of lanthanides. These observations demonstrate that nucleosynthesis in GRBs can create r-process elements across a broad atomic mass range and play a central role in heavy-element nucleosynthesis across the Universe.

3.
Microorganisms ; 11(9)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37764099

ABSTRACT

Lactic acid bacteria (LAB) have an extracellular proteolytic system that includes a multi-domain, cell envelope protease (CEP) with a subtilisin homologous protease domain. These CEPs have different proteolytic activities despite having similar protein sequences. Structural characterization has previously been limited to CEP homologs of dairy- and human-derived LAB strains, excluding CEPs of plant-derived LAB strains. CEP structures are a challenge to determine experimentally due to their large size and attachment to the cell envelope. This study aims to clarify the prevalence and structural diversity of CEPs by using the structure prediction software AlphaFold 2. Domain boundaries are clarified based on a comparative analysis of 21 three-dimensional structures, revealing novel domain architectures of CEP homologs that are not necessarily restricted to specific LAB species or ecological niches. The C-terminal flanking region of the protease domain is divided into fibronectin type-III-like domains with various structural traits. The analysis also emphasizes the existence of two distinct domains for cell envelope attachment that are preceded by an intrinsically disordered cell wall spanning domain. The domain variants and their combinations provide CEPs with different stability, proteolytic activity, and potentially adhesive properties, making CEPs targets for steering proteolytic activity with relevance for both food development and human health.

4.
Sci Rep ; 13(1): 12089, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37495650

ABSTRACT

The genetic architecture of the QT interval, defined as the period from onset of depolarisation to completion of repolarisation of the ventricular myocardium, is incompletely understood. Only a minor part of the QT interval variation in the general population has been linked to autosomal variant loci. Altered X chromosome dosage in humans, as seen in sex chromosome aneuploidies such as Turner syndrome (TS) and Klinefelter syndrome (KS), is associated with altered QTc interval (heart rate corrected QT), indicating that genes, located in the pseudoautosomal region 1 of the X and Y chromosomes may contribute to QT interval variation. We investigate the dosage effect of the pseudoautosomal gene SLC25A6, encoding the membrane ADP/ATP translocase 3 in the inner mitochondrial membrane, on QTc interval duration. To this end we used human participants and in vivo zebrafish models. Analyses in humans, based on 44 patients with KS, 44 patients with TS, 59 male and 22 females, revealed a significant negative correlation between SLC25A6 expression level and QTc interval duration. Similarly, downregulation of slc25a6 in zebrafish increased QTc interval duration with pharmacological inhibition of KATP channels restoring the systolic duration, whereas overexpression of SLC25A6 shortened QTc, which was normalized by pharmacological activation of KATP channels. Our study demonstrate an inverse relationship between SLC25A6 dosage and QTc interval indicating that SLC25A6 contributes to QT interval variation.


Subject(s)
Klinefelter Syndrome , Long QT Syndrome , Turner Syndrome , Animals , Female , Humans , Male , Adenosine Triphosphate , Electrocardiography , Long QT Syndrome/genetics , X Chromosome , Zebrafish/genetics , Adenine Nucleotide Translocator 3
5.
Fam Cancer ; 22(4): 429-436, 2023 10.
Article in English | MEDLINE | ID: mdl-37354305

ABSTRACT

Juvenile polyposis syndrome (JPS) is a hereditary hamartomatous polyposis syndrome characterized by gastrointestinal juvenile polyps and increased risk of gastrointestinal cancer. Germline pathogenic variants are detected in SMAD4 or BMPR1A, however in a significant number of patients with JPS, the etiology is unknown. From Danish registers, and genetic department and laboratories, we identified all patients in Denmark with a clinical diagnosis of JPS and/or a pathogenic variant in BMPR1A or SMAD4. In patients where no variant had been detected, we performed genetic analysis, including whole genome sequencing. We collected clinical information on all patients to investigate the phenotypic spectrum. Sixty-six patients (mean age 40 years) were included of whom the pathogenic variant was unknown in seven patients. We detected a pathogenic variant in SMAD4 or PTEN in additional three patients and thus ≈ 95% of patients had a pathogenic germline variant. Endoscopic information was available in fifty-two patients (79%) and of these 31 (60%) fulfilled the clinical criteria of JPS. In 41 patients (79%), other types of polyps than juvenile had been removed. Our results suggest that almost all patients with a clinical diagnosis of JPS has a pathogenic variant in mainly BMPR1A, SMAD4, and more rarely PTEN. However, not all patients with a pathogenic variant fulfil the clinical criteria of JPS. We also demonstrated a wide clinical spectrum, and that the histopathology of removed polyps varied.


Subject(s)
Gastrointestinal Neoplasms , Intestinal Polyposis , Neoplastic Syndromes, Hereditary , Polyps , Humans , Adult , Intestinal Polyposis/genetics , Neoplastic Syndromes, Hereditary/genetics , Germ-Line Mutation , Bone Morphogenetic Protein Receptors, Type I/genetics , Smad4 Protein/genetics , Whole Genome Sequencing
6.
Clin Genet ; 104(1): 81-89, 2023 07.
Article in English | MEDLINE | ID: mdl-37017260

ABSTRACT

Peutz-Jeghers syndrome (PJS) is an autosomal dominant hereditary polyposis syndrome causing increased morbidity and mortality due to complications of polyposis and the development of cancer. STK11 is the only gene known to be associated with PJS, although in 10%-15% of patients fulfilling the diagnostic criteria no pathogenic variant (PV) is identified. The primary aim of this study was to identify the genetic etiology in all known PJS patients in Denmark and to estimate the risk of cancer, effect of surveillance and overall survival. We identified 56 patients (2-83 years old) with PJS. The detection rate of PVs was 96%, including three cases of mosaicism (6%). In two patients a variant was not detected. At the age of 40 years, the probabilities of cancer and death were 21% and 16%, respectively; at the age of 70 years these probabilities were 71% and 69%. Most cases of cancer (92%) were identified between the scheduled examinations in the surveillance program. These observations emphasize that PJS should be regarded as a general cancer predisposition syndrome, where improvement of clinical care is needed.


Subject(s)
Colorectal Neoplasms , Peutz-Jeghers Syndrome , Humans , Adult , Aged , Child, Preschool , Child , Adolescent , Young Adult , Middle Aged , Aged, 80 and over , Peutz-Jeghers Syndrome/complications , Peutz-Jeghers Syndrome/genetics , Peutz-Jeghers Syndrome/diagnosis , Protein Serine-Threonine Kinases/genetics , Genotype , Mosaicism
7.
Ugeskr Laeger ; 185(1)2023 01 02.
Article in Danish | MEDLINE | ID: mdl-36629292

ABSTRACT

This state-of-the-art review evaluates whether contraceptive apps could improve knowledge resulting in greater interest and use of long-acting contraception, what type of information an app should contain, and who may benefit most from apps. The studies found a high interest in easy accessibility and respect for privacy. Science-based information and facilitation of knowledge about all contraceptives were desired. Contraceptive apps were useful in presenting women with validated information and complement professional advice.


Subject(s)
Contraception , Contraceptive Agents , Female , Humans , Contraception/methods
8.
Commun Biol ; 6(1): 63, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36653471

ABSTRACT

Transcription depends on complex networks, where folded hub proteins interact with intrinsically disordered transcription factors undergoing coupled folding and binding. For this, local residual structure, a prototypical feature of intrinsic disorder, is key. Here, we dissect the unexplored functional potential of residual structure by comparing structure, kinetics, and thermodynamics within the model system constituted of the DREB2A transcription factor interacting with the αα-hub RCD1-RST. To maintain biological relevance, we developed an orthogonal evolutionary approach for the design of variants with varying amounts of structure. Biophysical analysis revealed a correlation between the amount of residual helical structure and binding affinity, manifested in altered complex lifetime due to changed dissociation rate constants. It also showed a correlation between helical structure in free and bound DREB2A variants. Overall, this study demonstrated how evolution can balance and fine-tune residual structure to regulate complexes in coupled folding and binding, potentially affecting transcription factor competition.


Subject(s)
Protein Folding , Transcription Factors , Protein Binding , Transcription Factors/metabolism
9.
J Med Genet ; 60(5): 464-468, 2023 05.
Article in English | MEDLINE | ID: mdl-36038259

ABSTRACT

BACKGROUND AND AIMS: Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant condition characterised by recurrent epistaxis, telangiectatic lesions in the skin and mucosal membranes, and arteriovenous malformations (AVMs) in various organs. In 3%-5% of patients, HHT is caused by pathogenic germline variants (PVs) in SMAD4, and these patients often have additional symptoms of juvenile polyposis syndrome and thoracic aneurysms. The phenotypic spectrum of SMAD4-associated HHT is less known, including the penetrance and severity of HHT. We aimed to investigate the phenotypic spectrum of HHT manifestations in Danish patients with PVs in SMAD4 and compare the findings with current literature. METHODS: The study is a retrospective nationwide study with all known Danish patients with PVs in SMAD4. In total, 35 patients were included. The patients were identified by collecting data from genetic laboratories, various databases and clinical genetic departments across the country. Clinical information was mainly collected from the Danish HHT-Centre at Odense University Hospital. RESULTS: Twenty-nine patients with PVs in SMAD4 (83%) were seen at the HHT-Centre. Seventy-six per cent of these fulfilled the Curaçao criteria, 86% experienced recurrent epistaxis and 83% presented with telangiectatic lesions at different anatomical localisations. Almost 60% had AVMs, mainly pulmonary and hepatic, while none was found to have cerebral AVMs. Fifteen per cent had thoracic aortic abnormalities. CONCLUSION: We present a nationwide study of one of the largest populations of patients with PVs in SMAD4 that has systematically been examined for HHT manifestations. The patients presented the full spectrum of HHT-related manifestations and the majority fulfilled the Curaçao criteria.


Subject(s)
Smad4 Protein , Telangiectasia, Hereditary Hemorrhagic , Humans , Denmark/epidemiology , Epistaxis/etiology , Epistaxis/genetics , Intracranial Arteriovenous Malformations , Mutation , Retrospective Studies , Smad4 Protein/genetics , Telangiectasia, Hereditary Hemorrhagic/epidemiology , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/diagnosis
10.
Endosc Int Open ; 10(12): E1537-E1543, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36531685

ABSTRACT

Background and study aims In most patients with juvenile polyposis Syndrome, it is possible to detect a pathogenic germline variant in SMAD4 or BMPR1A . It is well known that patients with a pathogenic variant in SMAD4 have a higher risk of gastric polyposis and gastric cancer compared to BMPR1A carriers, but the natural history of gastric involvement is poorly described. We aimed to systematically review endoscopic and histopathological gastric findings in Danish patients with pathogenic variants in SMAD4. Patients and methods This was a retrospective, cross-sectional study including endoscopic and histological gastric findings in all known Danish patients with pathogenic variants in SMAD4 . The patients were identified by data from various registries as well as from clinical genetic departments and laboratories. Results We identified 41 patients (2-72 years) with a pathogenic SMAD4 variant . In 31 patients, we were able to retrieve information on upper gastrointestinal endoscopy. Eighty-seven percent had at least one gastric abnormality including erythema (72 %) and edema (72 %). Half of the patients also had vulnerability of the mucosa and 68 % had gastric polyposis. An increasing frequency of abnormalities were observed with increasing age. Gastric cancer was diagnosed in 5 % of the cases and 22 % had a gastrectomy mainly because of massive polyposis. Conclusions This study showed that most patients with pathogenic SMAD4 variants have a distinct phenotype of the gastric mucosa, and with an increasing severity in the elderly patients. These findings provide new insights into the natural history of gastric manifestations in patients with pathogenic SMAD4 variants.

11.
Int J Food Microbiol ; 381: 109889, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36057216

ABSTRACT

Plant-based food products are generating a growing interest as part of the ongoing transition to a primarily plant-based diet, which makes demands to the quality, functionality, and health properties of plant proteins. Microbes used for traditional food fermentations such as lactic acid bacteria (LAB) and fungi (yeasts and molds) carry out enzymatic changes on their protein substrates by which technological and sensorial characteristics can be improved. The literature on extracellular proteases targeting plant proteins, on the other hand, is scattered with only a narrow representation of plants even for traditionally plant-based products. Therefore, this review aims to explore the current state of knowledge regarding the application potential of microbial extracellular proteases targeting plant proteins, with a focus on traditional applied food microbes. Plant proteins are targeted by proteolytic microbes of both animal and plant origins, and their proteases show a wide range of activities. Extracellular microbial proteases can hydrolyze specific protein-based allergens and even reduce the toxicity of plant proteins. Additionally, microbial assisted proteolysis can improve plant protein digestibility by increasing availability of peptides and amino acids. This catabolic process will change the organoleptic characteristics of fermented plant proteins, and the release of bioactive peptides can provide additional functionalities to the plant matrix. The proteolytic activity is determined by the microbial strain, and it can be quite substrate selective, which is why proteases may be overlooked by the prevalent use of casein as substrate in proteolytic screenings. The synergetic effects of LAB and fungal species consortia can facilitate and steer plant protein hydrolysis by which co-fermentation may increase or change the properties of plant protein hydrolysates. Microbes do not necessarily require extracellular proteases because endogenous proteases in a plant-matrix may meet the microbial amino acid requirements. However, extracellular proteases have the potential to provide central properties to diverse food-matrixes by which the full proteolytic potential of food microbes needs to be explored in order to facilitate the development of high-quality plant-based food products.


Subject(s)
Lactobacillales , Peptide Hydrolases , Amino Acids/metabolism , Animals , Caseins/metabolism , Endopeptidases/metabolism , Fermentation , Food Microbiology , Lactobacillales/metabolism , Peptide Hydrolases/metabolism , Peptides/metabolism , Plant Proteins/metabolism , Protein Hydrolysates
12.
Hum Mutat ; 43(12): 1921-1944, 2022 12.
Article in English | MEDLINE | ID: mdl-35979650

ABSTRACT

Skipping of BRCA2 exon 3 (∆E3) is a naturally occurring splicing event, complicating clinical classification of variants that may alter ∆E3 expression. This study used multiple evidence types to assess pathogenicity of 85 variants in/near BRCA2 exon 3. Bioinformatically predicted spliceogenic variants underwent mRNA splicing analysis using minigenes and/or patient samples. ∆E3 was measured using quantitative analysis. A mouse embryonic stem cell (mESC) based assay was used to determine the impact of 18 variants on mRNA splicing and protein function. For each variant, population frequency, bioinformatic predictions, clinical data, and existing mRNA splicing and functional results were collated. Variant class was assigned using a gene-specific adaptation of ACMG/AMP guidelines, following a recently proposed points-based system. mRNA and mESC analysis combined identified six variants with transcript and/or functional profiles interpreted as loss of function. Cryptic splice site use for acceptor site variants generated a transcript encoding a shorter protein that retains activity. Overall, 69/85 (81%) variants were classified using the points-based approach. Our analysis shows the value of applying gene-specific ACMG/AMP guidelines using a points-based approach and highlights the consideration of cryptic splice site usage to appropriately assign PVS1 code strength.


Subject(s)
Genes, BRCA2 , RNA Splice Sites , Animals , Humans , Mice , Alternative Splicing , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , RNA Splicing , RNA, Messenger/genetics , RNA, Messenger/metabolism
13.
J Pineal Res ; 73(1): e12809, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35619221

ABSTRACT

The use of the sleep-promoting hormone melatonin is rapidly increasing as an assumed safe sleep aid. During the last decade, accumulating observations suggest that melatonin affects glucose homeostasis, but the precise role remains to be defined. We investigated the metabolic effects of long-term melatonin treatment in patients with type 2 diabetes including determinations of insulin sensitivity and glucose-stimulated insulin secretion. We used a double-blinded, randomized, placebo-controlled, crossover design. Seventeen male participants with type 2 diabetes completed (1) 3 months of daily melatonin treatment (10 mg) 1 h before bedtime (M) and (2) 3 months of placebo treatment 1 h before bedtime (P). At the end of each treatment period, insulin secretion was assessed by an intravenous glucose tolerance test (0.3 g/kg) (IVGTT) and insulin sensitivity was assessed by a hyperinsulinemic-euglycemic clamp (insulin infusion rate 1.5 mU/kg/min) (primary endpoints). Insulin sensitivity decreased after melatonin (3.6 [2.9-4.4] vs. 4.1 [3.2-5.2] mg/(kg × min), p = .016). During the IVGTT, the second-phase insulin response was increased after melatonin (p = .03). In conclusion, melatonin treatment of male patients with type 2 diabetes for 3 months decreased insulin sensitivity by 12%. Clinical use of melatonin treatment in dosages of 10 mg should be reserved for conditions where the benefits will outweigh the potential negative impact on insulin sensitivity.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Melatonin , Blood Glucose/metabolism , Cross-Over Studies , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Double-Blind Method , Glucose , Humans , Insulin/metabolism , Male , Melatonin/therapeutic use
14.
J Natl Cancer Inst ; 114(1): 109-122, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34320204

ABSTRACT

BACKGROUND: Recent population-based female breast cancer and prostate cancer polygenic risk scores (PRS) have been developed. We assessed the associations of these PRS with breast and prostate cancer risks for male BRCA1 and BRCA2 pathogenic variant carriers. METHODS: 483 BRCA1 and 1318 BRCA2 European ancestry male carriers were available from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). A 147-single nucleotide polymorphism (SNP) prostate cancer PRS (PRSPC) and a 313-SNP breast cancer PRS were evaluated. There were 3 versions of the breast cancer PRS, optimized to predict overall (PRSBC), estrogen receptor (ER)-negative (PRSER-), or ER-positive (PRSER+) breast cancer risk. RESULTS: PRSER+ yielded the strongest association with breast cancer risk. The odds ratios (ORs) per PRSER+ standard deviation estimates were 1.40 (95% confidence interval [CI] =1.07 to 1.83) for BRCA1 and 1.33 (95% CI = 1.16 to 1.52) for BRCA2 carriers. PRSPC was associated with prostate cancer risk for BRCA1 (OR = 1.73, 95% CI = 1.28 to 2.33) and BRCA2 (OR = 1.60, 95% CI = 1.34 to 1.91) carriers. The estimated breast cancer odds ratios were larger after adjusting for female relative breast cancer family history. By age 85 years, for BRCA2 carriers, the breast cancer risk varied from 7.7% to 18.4% and prostate cancer risk from 34.1% to 87.6% between the 5th and 95th percentiles of the PRS distributions. CONCLUSIONS: Population-based prostate and female breast cancer PRS are associated with a wide range of absolute breast and prostate cancer risks for male BRCA1 and BRCA2 carriers. These findings warrant further investigation aimed at providing personalized cancer risks for male carriers and informing clinical management.


Subject(s)
Breast Neoplasms , Prostatic Neoplasms , Aged, 80 and over , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Heterozygote , Humans , Male , Mutation , Polymorphism, Single Nucleotide , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/genetics , Risk Assessment , Risk Factors
15.
Genet Med ; 22(10): 1653-1666, 2020 10.
Article in English | MEDLINE | ID: mdl-32665703

ABSTRACT

PURPOSE: We assessed the associations between population-based polygenic risk scores (PRS) for breast (BC) or epithelial ovarian cancer (EOC) with cancer risks for BRCA1 and BRCA2 pathogenic variant carriers. METHODS: Retrospective cohort data on 18,935 BRCA1 and 12,339 BRCA2 female pathogenic variant carriers of European ancestry were available. Three versions of a 313 single-nucleotide polymorphism (SNP) BC PRS were evaluated based on whether they predict overall, estrogen receptor (ER)-negative, or ER-positive BC, and two PRS for overall or high-grade serous EOC. Associations were validated in a prospective cohort. RESULTS: The ER-negative PRS showed the strongest association with BC risk for BRCA1 carriers (hazard ratio [HR] per standard deviation = 1.29 [95% CI 1.25-1.33], P = 3×10-72). For BRCA2, the strongest association was with overall BC PRS (HR = 1.31 [95% CI 1.27-1.36], P = 7×10-50). HR estimates decreased significantly with age and there was evidence for differences in associations by predicted variant effects on protein expression. The HR estimates were smaller than general population estimates. The high-grade serous PRS yielded the strongest associations with EOC risk for BRCA1 (HR = 1.32 [95% CI 1.25-1.40], P = 3×10-22) and BRCA2 (HR = 1.44 [95% CI 1.30-1.60], P = 4×10-12) carriers. The associations in the prospective cohort were similar. CONCLUSION: Population-based PRS are strongly associated with BC and EOC risks for BRCA1/2 carriers and predict substantial absolute risk differences for women at PRS distribution extremes.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Carcinoma, Ovarian Epithelial/genetics , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Mutation , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/genetics , Prospective Studies , Retrospective Studies , Risk Factors
16.
Sci Rep ; 9(1): 18927, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31831797

ABSTRACT

Radical-Induced Cell Death1 (RCD1) functions as a cellular hub interacting with intrinsically disordered transcription factor regions, which lack a well-defined three-dimensional structure, to regulate plant stress. Here, we address the molecular evolution of the RCD1-interactome. Using bioinformatics, its history was traced back more than 480 million years to the emergence of land plants with the RCD1-binding short linear motif (SLiM) identified from mosses to flowering plants. SLiM variants were biophysically verified to be functional and to depend on the same RCD1 residues as the DREB2A transcription factor. Based on this, numerous additional members may be assigned to the RCD1-interactome. Conservation was further strengthened by similar intrinsic disorder profiles of the transcription factor homologs. The unique structural plasticity of the RCD1-interactome, with RCD1-binding induced α-helix formation in DREB2A, but not detectable in ANAC046 or ANAC013, is apparently conserved. Thermodynamic analysis also indicated conservation with interchangeability between Arabidopsis and soybean RCD1 and DREB2A, although with fine-tuned co-evolved binding interfaces. Interruption of conservation was observed, as moss DREB2 lacked the SLiM, likely reflecting differences in plant stress responses. This whole-interactome study uncovers principles of the evolution of SLiM:hub-interactions, such as conservation of α-helix propensities, which may be paradigmatic for disorder-based interactomes in eukaryotes.


Subject(s)
Evolution, Molecular , Glycine max , Hordeum , Nuclear Proteins , Protein Interaction Maps , Soybean Proteins , Hordeum/chemistry , Hordeum/genetics , Hordeum/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Structure, Secondary , Soybean Proteins/chemistry , Soybean Proteins/genetics , Soybean Proteins/metabolism , Glycine max/chemistry , Glycine max/genetics , Glycine max/metabolism
17.
Fam Cancer ; 18(4): 381-388, 2019 10.
Article in English | MEDLINE | ID: mdl-31435815

ABSTRACT

The Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) calculates the probability that a woman carries a pathogenic variant in BRCA1 or BRCA2 based on her pedigree and the population frequencies of pathogenic alleles of BRCA1 (0.0006394) and BRCA2 (0.00102) in the United Kingdom (UK). BOADICEA allows the clinician to define the population frequencies of pathogenic alleles of BRCA1 and BRCA2 for other populations but only includes preset values for the Ashkenazy Jewish and Icelandic populations. Among 173 early-onset breast cancer pedigrees in Denmark, BOADICEA discriminated well between carriers and non-carriers of pathogenic variants (area under the receiver operating characteristics curve: 0.81; 95% CI 0.74-0.86) but underestimated the frequency of carriers of pathogenic variants in BRCA1 or BRCA2 as measured by the observed-to-expected ratio (O/E 1.83; 95% CI 1.18-2.84). This reflects findings from older studies of BOADICEA in UK, German, Italian, and Chinese populations, all accounting for the different calibration for different carrier probabilities. To improve the performance of BOADICEA for non-UK populations, we developed a method to derive population frequencies of pathogenic alleles of BRCA1 and BRCA2. Compared to the UK population frequencies, we estimated the Danish population frequencies of pathogenic alleles to be higher for BRCA1 (0.0015; 95% CI 0.00064-0.0034) and lower for BRCA2 (0.00052; 95% CI 0.00018-0.0017) after adjusting for the different calibration of BOADICEA for different carrier probabilities. Incorporating additional population frequencies into BOADICEA could improve its performance for non-UK populations.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Gene Frequency , Models, Genetic , Adult , Age of Onset , Algorithms , Breast Neoplasms/epidemiology , Calibration , Denmark , Female , Heterozygote , Humans , Incidence , Pedigree , United Kingdom/epidemiology
18.
Anticancer Res ; 39(2): 567-576, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30711931

ABSTRACT

BACKGROUND/AIM: New markers for ovarian cancer are needed. This study aimed to examine the expression of tumour cell p53 and endothelial cell CD31 proteins and correlate them to clinicopathological factors. PATIENTS AND METHODS: Expression of proteins was immunohistochemically assessed using tissue sections from 585-599 ovarian cancer patients from the Danish MALOVA study. RESULTS: High CD31 expression was found in poorly differentiated tumours (p=0.0006), and high p53 expression was found in poorly differentiated cancers (p<0.0001), high clinical stage (p<0.0001), non-radical surgery (p<0.0001) and high serum CA-125 values (p<0.0001). CD31 expression showed no prognostic survival value, but high hazard ratios were found for patients with high p53 expression (HR=2.313, p<0.0001). An interaction was found between p53 and stage of cancer, suggesting a prognostic impact of p53 in low-stage, but not in advanced-stage cancer. CONCLUSION: More than 5% of p53 tissue expression may predict shorter survival of ovarian cancer patients and may be useful for predicting the risk of disease progression in low-stage patients following primary surgery. CD31 has no strong prognostic value.


Subject(s)
Gene Expression Regulation, Neoplastic , Ovarian Neoplasms/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Tumor Suppressor Protein p53/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/mortality , Cell Differentiation , Denmark , Disease Progression , Female , Gene Expression Profiling , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Neoplasm Staging , Ovarian Neoplasms/mortality , Prognosis , Risk Factors
19.
Nucleic Acids Res ; 46(15): 7938-7952, 2018 09 06.
Article in English | MEDLINE | ID: mdl-29762696

ABSTRACT

Familial dysautonomia (FD) is a severe genetic disorder causing sensory and autonomic dysfunction. It is predominantly caused by a c.2204+6T>C mutation in the IKBKAP gene. This mutation decreases the 5' splice site strength of IKBKAP exon 20 leading to exon 20 skipping and decreased amounts of full-length IKAP protein. We identified a binding site for the splicing regulatory protein hnRNP A1 downstream of the IKBKAP exon 20 5'-splice site. We show that hnRNP A1 binds to this splicing regulatory element (SRE) and that two previously described inhibitory SREs inside IKBKAP exon 20 are also bound by hnRNP A1. Knockdown of hnRNP A1 in FD patient fibroblasts increases IKBKAP exon 20 inclusion demonstrating that hnRNP A1 is a negative regulator of IKBKAP exon 20 splicing. Furthermore, by mutating the SREs in an IKBKAP minigene we show that all three SREs cause hnRNP A1-mediated exon repression. We designed splice switching oligonucleotides (SSO) that blocks the intronic hnRNP A1 binding site, and demonstrate that this completely rescues splicing of IKBKAP exon 20 in FD patient fibroblasts and increases the amounts of IKAP protein. We propose that this may be developed into a potential new specific treatment of FD.


Subject(s)
Carrier Proteins/genetics , Heterogeneous Nuclear Ribonucleoprotein A1/genetics , Mutation , RNA Splicing , Base Sequence , Binding Sites/genetics , Carrier Proteins/metabolism , Cell Line , Cells, Cultured , Exons/genetics , Fibroblasts/metabolism , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Humans , Introns/genetics , Oligonucleotides/genetics , Oligonucleotides/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Transcriptional Elongation Factors
20.
Biol Reprod ; 99(4): 888-897, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29718108

ABSTRACT

The potential endocrine disrupting effects of the commonly prescribed anti-epileptic drug lamotrigine (LAM) were investigated using the H295R steroidogenic in vitro assay and computational chemistry methods. The H295R cells were exposed to different concentrations of LAM, and a multi-steroid LC-MS/MS method was applied to quantify the amount of secreted steroid hormones. LAM affected several steroid hormones in the steroidogenesis at therapeutic concentrations. All progestagens as well as 11-deoxycorticosterone and corticosterone increased 100-200% with increasing concentrations of LAM suggesting a selective inhibitory effect of LAM on CYP17A1, in particular on the lyase reaction. Recombinant CYP17A1 assay confirmed the competitive inhibition of LAM toward the enzyme with IC50 values of 619 and 764 µM for the lyase and the hydroxylase reaction, respectively. Levels of androstenedione and testosterone decreased at LAM concentrations above the therapeutic concentration range. The ability of LAM to bind to CYP17A1, CYP19A1, and CYP21A2 was investigated using docking and molecular dynamics simulations. This in silico study showed that LAM was able to bind directly to the heme iron in the active site of CYP17A1, but not CYP21A2, thus supporting the results of the in vitro studies. The molecular dynamics simulations also suggested binding of LAM to the heme iron in the CYP19A1 active site. No inhibition of the aromatase enzyme was, however, observed in the H295R assay. This could be due to a sequential effect within the steroidogenesis caused by the inhibition of CYP17A1, which reduced the amounts of androgens available for CYP19A1.


Subject(s)
Anticonvulsants/pharmacology , Aromatase Inhibitors/pharmacology , Aromatase/metabolism , Lamotrigine/pharmacology , Anticonvulsants/chemistry , Aromatase/chemistry , Aromatase Inhibitors/chemistry , Catalytic Domain , Cell Line , Endocrine Disruptors/chemistry , Endocrine Disruptors/pharmacology , Humans , In Vitro Techniques , Lamotrigine/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Steroids/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...