Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Biol (Camb) ; 162024 Jan 23.
Article in English | MEDLINE | ID: mdl-38516930

ABSTRACT

A critical phase of wound healing is the coordinated movement of keratinocytes. To this end, bioglasses show promise in speeding healing in hard tissues and skin wounds. Studies suggest that bioglass materials may promote wound healing by inducing positive cell responses in proliferation, growth factor production, expression of angiogenic factors, and migration. Precise details of how bioglass may stimulate migration are unclear, however, because the common assays for studying migration in wound healing focus on simplified outputs like rate of migration or total change in wound area. These outputs are limited in that they represent the average behavior of the collective, with no connection between the motion of the individual cells and the collective wound healing response. There is a need to apply more refined tools that identify how the motion of the individual cells changes in response to perturbations, such as by bioglass, and in turn affects motion of the cell collective. Here, we apply an integrative biology strategy that combines an in vitro wound healing assay using primary neonatal human keratinocytes with time lapse microscopy and quantitative image analysis. The resulting data set provides the cell velocity field, from which we define key metrics that describe cooperative migration phenotypes. Treatment with growth factors led to faster single-cell speeds compared to control, but the migration was not cooperative, with cells breaking away from their neighbors and migrating as individuals. Treatment with calcium or bioglass led to migration phenotypes that were highly collective, with greater coordination in space compared to control. We discuss the link between bioglass treatment and observed increases in free calcium ions that are hypothesized to promote these distinct coordinated behaviors in primary keratinocytes. These findings have been enabled by the unique descriptors developed through applying image analysis to interpret biological response in migration models. Insight Box/Paragraph Statement: Bioglasses are important materials for tissue engineering and have more recently shown promise in skin and wound healing by mechanisms tied to their unique ionic properties. The precise details, however, of how cell migration may be affected by bioglass are left unclear by traditional cell assay methods. The following describes the integration of migration assays of keratinocytes, cells critical for skin and wound healing, with the tools of time lapse microscopy and image analysis to generate a quantitative description of coordinated, tissue-like migration behavior, stimulated by bioglass, that would not have been accessible without the combination of these analytical tools.


Subject(s)
Calcium , Ceramics , Keratinocytes , Infant, Newborn , Humans , Calcium/metabolism , Cell Movement/physiology , Biology
2.
Phys Chem Chem Phys ; 20(3): 1629-1641, 2018 Jan 17.
Article in English | MEDLINE | ID: mdl-29261212

ABSTRACT

Glasses are promising candidate materials for all-solid-state electrolytes for rechargeable batteries due to their outstanding mechanical stability, wide electrochemical stability range, and open structure for potentially high conductivity. Mechanical stiffness and ionic conductivity are two key parameters for solid-state electrolytes. In this study, we investigate two mixed-network former glass systems, sodium borosilicate 0.2Na2O + 0.8[xBO1.5 + (1 - x)SiO2] and sodium borogermanate 0.2Na2O + 0.8[xBO1.5 + (1 - x)GeO2] glasses. With mixed-network formers, the structure of the network changes while the network modifier mole fraction is kept constant, i.e., x = 0.2, which allows us to analyze the effect of the network structure on various properties, including ionic conductivity and elastic properties. Besides the non-linear, non-additive mixed glass former effect, we find that the longitudinal, shear and Young's moduli depend on the combined number density of tetrahedrally and octahedrally coordinated network former elements. These units provide connectivity in three dimensions, which is required for the networks to exhibit restoring forces in response to isotropic and shear deformations. Moreover, the activation energy for modifier cation, Na+, migration is strongly correlated with the bulk modulus, suggesting that the elastic strain energy associated with the passageway dilation for the sodium ions is governed by the bulk modulus of the glass. The detailed analysis provided here gives an estimate for the number of atoms in the vicinity of the migrating cation that are affected by elastic deformation during the activated process. The larger this number and the more compliant the glass network, the lower is the activation energy for the cation jump.

3.
Phys Chem Chem Phys ; 19(24): 15942-15952, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28593205

ABSTRACT

Elastic properties of alkali containing glasses are of great interest not only because they provide information about overall structural integrity but also they are related to other properties such as thermal conductivity and ion mobility. In this study, we investigate two mixed-network former glass systems, sodium borosilicate 0.2Na2O + 0.8[xBO1.5 + (1 - x)SiO2] and sodium borogermanate 0.2Na2O + 0.8[xBO1.5 + (1 - x)GeO2] glasses. By mixing network formers, the network topology can be changed while keeping the network modifier concentration constant, which allows for the effect of network structure on elastic properties to be analyzed over a wide parametric range. In addition to non-linear, non-additive mixed-glass former effects, maxima are observed in longitudinal, shear and Young's moduli with increasing atomic number density. By combining results from NMR spectroscopy and Brillouin light scattering with a newly developed statistical thermodynamic reaction equilibrium model, it is possible to determine the relative proportions of all network structural units. This new analysis reveals that the structural characteristic predominantly responsible for effective mechanical load transmission in these glasses is a high density of network cations coordinated by four or more bridging oxygens, as it provides for establishing a network of covalent bonds among these cations with connectivity in three dimensions.

4.
J Phys Chem B ; 120(19): 4482-95, 2016 05 19.
Article in English | MEDLINE | ID: mdl-27092392

ABSTRACT

Glasses with varying compositions of constituent network formers but constant mobile ion content can display minima or maxima in their ion transport which are known as the negative or the positive mixed glass former effect, MGFE, respectively. Various nuclear magnetic resonance (NMR) techniques are used to probe the ion hopping dynamics via the (23)Na nucleus on the microscopic level, and the results are compared with those from conductivity spectroscopy, which are more sensitive to the macroscopic charge carrier mobility. In this way, the current work examines two series of sodium borosilicate and sodium borophosphate glasses that display positive and negative MGFEs, respectively, in the composition dependence of their Na(+) ion conductivities at intermediate compositions of boron oxide substitution for silicon oxide and phosphorus oxide, respectively. A coherent theoretical analysis is performed for these glasses which jointly captures the results from measurements of spin relaxation and central-transition line shapes. On this basis and including new information from (11)B magic-angle spinning NMR regarding the speciation in the sodium borosilicate glasses, a comparison is carried out with predictions from theoretical approaches, notably from the network unit trap model. This comparison yields detailed insights into how a variation of the boron oxide content and thus of either the population of silicon or phosphorus containing network-forming units with different charge-trapping capabilities leads to nonlinear changes of the microscopic transport properties.

5.
J Phys Chem B ; 117(51): 16577-86, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-24295052

ABSTRACT

The mixed glass former effect (MGFE) is defined as a nonlinear and nonadditive change in the ionic conductivity with changing glass former fraction at constant modifier composition between two binary glass forming compositions. In this study, mixed glass former (MGF) sodium borophosphate glasses, 0.35Na2O + 0.65[xB2O3 + (1 - x)P2O5], 0 ≤ x ≤ 1, have been prepared, and their sodium ionic conductivity has been studied. The ionic conductivity exhibits a strong, positive MGFE that is caused by a corresponding strongly negative nonlinear, nonadditive change in the conductivity activation energy with changing glass former content, x. We describe a successful model of the MGFE in the conductivity activation energy terms of the underlying short-range order (SRO) phosphate and borate glass former structures present in these glasses. To do this, we have developed a modified Anderson-Stuart (A-S) model to explain the decrease in the activation energy in terms of the atomic level composition dependence (x) of the borate and phosphate SRO structural groups, the Na(+) ion concentration, and the Na(+) mobility. In our revision of the A-S model, we carefully improve the treatment of the cation jump distance and incorporate an effective Madelung constant to account for many body coulomb potential effects. Using our model, we are able to accurately reproduce the composition dependence of the activation energy with a single adjustable parameter, the effective Madelung constant, that changes systematically with composition, x, and varies by no more than 10% from values typical of oxide ceramics. Our model suggests that the decreasing columbic binding energies that govern the concentration of the mobile cations are sufficiently strong in these glasses to overcome the increasing volumetric strain energies (mobility) caused by strongly increasing glass-transition temperatures combined with strongly decreasing molar volumes of these glasses. The dependence of the columbic binding energy term on the relative high-frequency dielectric permittivity suggests that the increased polarizability of the bridging oxygens connecting SRO tetrahedral boron units to phosphorus units causes further charge delocalization away from the negatively charged tetrahedral boron units, leading to a lowering of the charge density, and is the underlying cause of the MGFE.

6.
J Phys Chem B ; 117(7): 2169-79, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23281937

ABSTRACT

The mixed glass former (MGF) effect (MGFE) is defined as a nonlinear and nonadditive change in the ionic conductivity with changing glass former composition at constant modifier composition. In this study, sodium borophosphate 0.35Na(2)O + 0.65[xB(2)O(3) + (1 - x)P(2)O(5)], 0 ≤ x ≤ 1, glasses which have been shown to exhibit a positive MGFE have been prepared and examined using Raman and (11)B and (31)P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopies. Through examination of the short-range order (SRO) structures found in the ternary glasses, it was determined that the minority glass former, B for 0.1 ≤ x ≤ 0.7 and P for 0.7 ≤ x ≤ 0.9, is "overmodified" and contains more Na(+) ions than would be expected from simple linear mixing of the binary sodium borate, x = 1, and sodium phosphate, x = 0, glasses, respectively. Changes in the intermediate range order (IRO) structures were suggested by changes in the NMR spectral chemical shifts and Raman spectra wavenumber shifts over the full composition range x in the Raman and MAS NMR spectra. The changes observed in the chemical shifts of (31)P MAS NMR spectra with x are found to be too large to be caused solely by changing sodium modification of the phosphate SRO structural groups, and this indicates that internetwork bonding between phosphorus and boron through bridging oxygens (BOs), P-O-B, must be a major contributor to the IRO structure of these glasses. While not fully developed, a first-order thermodynamic analysis based upon the Gibbs free energies of formation of the various SRO structural units in this system has been developed and can be used to account for the preferential formation of tetrahedral boron groups, B(4), by the reaction of B(3) with P(2) groups to form B(4) and P(3) groups, respectively, where the superscript denotes the number of BOs on these units, in these glasses. This preference for B(4) units appears to be a predominate cause of the changing modifier to glass former ratio with composition x in these ternary MGF glasses and appears to be associated with the large negative value of the Gibbs free energy of formation of this group.

SELECTION OF CITATIONS
SEARCH DETAIL
...