Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 150: 239-247, 2016 May.
Article in English | MEDLINE | ID: mdl-26901481

ABSTRACT

In 2009, we identified a TCE plume at an abandoned landfill that was located in a low permeable silty-clay aquifer. To treat the TCE, we manufactured slow-release potassium permanganate cylinders (oxidant candles) that had diameters of either 5.1 or 7.6 cm and were 91.4 cm long. In 2010, we compared two methods of candle installation by inserting equal masses of the oxidant candles (7.6-cm vs 5.1-cm dia). The 5.1-cm dia candles were inserted with direct-push rods while the 7.6-cm candles were housed in screens and lowered into 10 permanent wells. Since installation, the 7.6-cm oxidant candles have been refurbished approximately once per year by gently scraping off surface oxides. In 2012, we reported initial results; in this paper, we provide a 5-yr performance review since installation. Temporal sampling shows oxidant candles placed in wells have steadily reduced migrating TCE concentrations. Moreover, these candles still maintain an inner core of oxidant that has yet to contribute to the dissolution front and should provide several more years of service. Oxidant candles inserted by direct-push have stopped reducing TCE concentrations because a MnO2 scale developed on the outside of the candles. To counteract oxide scaling, we fabricated a second generation of oxidant candles that contain sodium hexametaphosphate. Laboratory experiments (batch and flow-through) show that these second-generation permanganate candles have better release characteristics and are less prone to oxide scaling. This improvement should reduce the need to perform maintenance on candles placed in wells and provide greater longevity for candles inserted by direct-push.


Subject(s)
Groundwater/chemistry , Oxidants/chemistry , Potassium Permanganate/chemistry , Trichloroethylene/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Trichloroethylene/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/instrumentation
2.
Chemosphere ; 89(6): 680-7, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22784864

ABSTRACT

Past disposal of industrial solvents into unregulated landfills is a significant source of groundwater contamination. In 2009, we began investigating a former unregulated landfill with known trichloroethene (TCE) contamination. Our objective was to pinpoint the location of the plume and treat the TCE using in situ chemical oxidation (ISCO). We accomplished this by using electrical resistivity imaging (ERI) to survey the landfill and map the subsurface lithology. We then used the ERI survey maps to guide direct push groundwater sampling. A TCE plume (100-600 µg L(-1)) was identified in a low permeable silty-clay aquifer (K(h)=0.5 md(-1)) that was within 6m of ground surface. To treat the TCE, we manufactured slow-release potassium permanganate candles (SRPCs) that were 91.4 cm long and either 5. cm or 7.6 cm in dia. For comparison, we inserted equal masses of SRPCs (7.6-cm versus 5.1-cm dia) into the low permeable aquifer in staggered rows that intersected the TCE plume. The 5.1-cm dia candles were inserted using direct push rods while the 7.6-cm SRPCs were placed in 10 permanent wells. Pneumatic circulators that emitted small air bubbles were placed below the 7.6-cm SRPCs in the second year. Results 15 months after installation showed significant TCE reductions in the 7.6-cm candle treatment zone (67-85%) and between 10% and 66% decrease in wells impacted by the direct push candles. These results support using slow-release permanganate candles as a means of treating chlorinated solvents in low permeable aquifers.


Subject(s)
Groundwater/chemistry , Potassium Permanganate/chemistry , Trichloroethylene/chemistry , Water Pollutants, Chemical/chemistry , Aluminum Silicates/chemistry , Clay , Environmental Restoration and Remediation , Oxidation-Reduction , Paraffin/chemistry , Refuse Disposal
SELECTION OF CITATIONS
SEARCH DETAIL
...