Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1881): 20220191, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37246387

ABSTRACT

In the coming decades, warming and deoxygenation of marine waters are anticipated to result in shifts in the distribution and abundance of fishes, with consequences for the diversity and composition of fish communities. Here, we combine fisheries-independent trawl survey data spanning the west coast of the USA and Canada with high-resolution regional ocean models to make projections of how 34 groundfish species will be impacted by changes in temperature and oxygen in British Columbia (BC) and Washington. In this region, species that are projected to decrease in occurrence are roughly balanced by those that are projected to increase, resulting in considerable compositional turnover. Many, but not all, species are projected to shift to deeper depths as conditions warm, but low oxygen will limit how deep they can go. Thus, biodiversity will likely decrease in the shallowest waters (less than 100 m), where warming will be greatest, increase at mid-depths (100-600 m) as shallow species shift deeper, and decrease at depths where oxygen is limited (greater than 600 m). These results highlight the critical importance of accounting for the joint role of temperature, oxygen and depth when projecting the impacts of climate change on marine biodiversity. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.


Subject(s)
Biodiversity , Oxygen , Animals , Fishes , Climate Change , Canada , Ecosystem
2.
Global Biogeochem Cycles ; 34(8): e2019GB006453, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32999530

ABSTRACT

Anthropogenically forced changes in ocean biogeochemistry are underway and critical for the ocean carbon sink and marine habitat. Detecting such changes in ocean biogeochemistry will require quantification of the magnitude of the change (anthropogenic signal) and the natural variability inherent to the climate system (noise). Here we use Large Ensemble (LE) experiments from four Earth system models (ESMs) with multiple emissions scenarios to estimate Time of Emergence (ToE) and partition projection uncertainty for anthropogenic signals in five biogeochemically important upper-ocean variables. We find ToEs are robust across ESMs for sea surface temperature and the invasion of anthropogenic carbon; emergence time scales are 20-30 yr. For the biological carbon pump, and sea surface chlorophyll and salinity, emergence time scales are longer (50+ yr), less robust across the ESMs, and more sensitive to the forcing scenario considered. We find internal variability uncertainty, and model differences in the internal variability uncertainty, can be consequential sources of uncertainty for projecting regional changes in ocean biogeochemistry over the coming decades. In combining structural, scenario, and internal variability uncertainty, this study represents the most comprehensive characterization of biogeochemical emergence time scales and uncertainty to date. Our findings delineate critical spatial and duration requirements for marine observing systems to robustly detect anthropogenic change.

3.
PLoS One ; 9(11): e109820, 2014.
Article in English | MEDLINE | ID: mdl-25386910

ABSTRACT

Changes in ocean chemistry and climate induced by anthropogenic CO2 affect a broad range of ocean biological and biogeochemical processes; these changes are already well underway. Direct effects of CO2 (e.g. on pH) are prominent among these, but climate model simulations with historical greenhouse gas forcing suggest that physical and biological processes only indirectly forced by CO2 (via the effect of atmospheric CO2 on climate) begin to show anthropogenically-induced trends as early as the 1920s. Dates of emergence of a number of representative ocean fields from the envelope of natural variability are calculated for global means and for spatial 'fingerprints' over a number of geographic regions. Emergence dates are consistent among these methods and insensitive to the exact choice of regions, but are generally earlier with more spatial information included. Emergence dates calculated for individual sampling stations are more variable and generally later, but means across stations are generally consistent with global emergence dates. The last sign reversal of linear trends calculated for periods of 20 or 30 years also functions as a diagnostic of emergence, and is generally consistent with other measures. The last sign reversal among 20 year trends is found to be a conservative measure (biased towards later emergence), while for 30 year trends it is found to have an early emergence bias, relative to emergence dates calculated by departure from the preindustrial mean. These results are largely independent of emission scenario, but the latest-emerging fields show a response to mitigation. A significant anthropogenic component of ocean variability has been present throughout the modern era of ocean observation.


Subject(s)
Carbon Dioxide/analysis , Climate Change , Models, Theoretical , Oceans and Seas , Atmosphere/chemistry , Carbon Dioxide/chemistry , Climate
4.
Proc Natl Acad Sci U S A ; 111(19): 6888-93, 2014 May 13.
Article in English | MEDLINE | ID: mdl-24778239

ABSTRACT

Cadmium (Cd) is a micronutrient and a tracer of biological productivity and circulation in the ocean. The correlation between dissolved Cd and the major algal nutrients in seawater has led to the use of Cd preserved in microfossils to constrain past ocean nutrient distributions. However, linking Cd to marine biological processes requires constraints on marine sources and sinks of Cd. Here, we show a decoupling between Cd and major nutrients within oxygen-deficient zones (ODZs) in both the Northeast Pacific and North Atlantic Oceans, which we attribute to Cd sulfide (CdS) precipitation in euxinic microenvironments around sinking biological particles. We find that dissolved Cd correlates well with dissolved phosphate in oxygenated waters, but is depleted compared with phosphate in ODZs. Additionally, suspended particles from the North Atlantic show high Cd content and light Cd stable isotope ratios within the ODZ, indicative of CdS precipitation. Globally, we calculate that CdS precipitation in ODZs is an important, and to our knowledge a previously undocumented marine sink of Cd. Our results suggest that water column oxygen depletion has a substantial impact on Cd biogeochemical cycling, impacting the global relationship between Cd and major nutrients and suggesting that Cd may be a previously unidentified tracer for water column oxygen deficiency on geological timescales. Similar depletions of copper and zinc in the Northeast Pacific indicate that sulfide precipitation in ODZs may also have an influence on the global distribution of other trace metals.


Subject(s)
Cadmium/metabolism , Oxygen/metabolism , Seawater/chemistry , Stramenopiles/growth & development , Stramenopiles/metabolism , Marine Biology , Oceanography , Oceans and Seas , Phosphates/metabolism , Trace Elements/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...