Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Psychiatry ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866174

ABSTRACT

BACKGROUND: Increased vulnerability to stress is a major risk factor for several mood disorders, including major depressive disorder (MDD). Although cellular and molecular mechanisms associated with depressive behaviors following stress have been identified, little is known about the mechanisms conferring vulnerability that predisposes individuals to future damage from chronic stress. METHODS: We used multi-site in vivo neurophysiology in freely behaving male and female C57BL/6 mice (n=12) to measure electrical brain network activity previously identified as indicating a latent stress vulnerability brain state. We combined this neurophysiological approach with single-cell RNA sequencing (scRNA-Seq) of the prefrontal cortex (PFC) to identify distinct transcriptomic differences between groups of mice with inherent high and low stress vulnerability. RESULTS: We identified hundreds of differentially expressed genes (padj <0.05) across five major cell types between animals with high and low stress vulnerability brain network activity. This unique analysis revealed that GABAergic neuron gene expression contributes most to the network activity of the stress vulnerability brain state. Upregulation of mitochondrial and metabolic pathways also distinguished high and low vulnerability brain states, especially in inhibitory neurons. Importantly, genes that were differentially regulated with vulnerability network activity significantly overlapped (above chance) with those identified by genome-wide association studies (GWAS) as having SNPs significantly associated with depression as well as genes more highly expressed in post-mortem PFC of patients with MDD. CONCLUSIONS: This is the first study to identify cell types and genes involved in a latent stress vulnerability state in the brain.

2.
Environ Res ; 239(Pt 1): 117378, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37832768

ABSTRACT

2,4,6-triamino-1,3,5-trinitrobenzene (TATB) is an Insensitive High Explosive (IHE) that is increasingly being used as a safer alternative to traditional energetic materials. However, the high thermal stability of TATB poses challenges for its disposal, particularly through existing open burning methods and its ability to remain in the environment for long period of time. Therefore, this study investigated the persistence of TATB in the environment by conducting small-scale experiments which were designed to examine the resistance of TATB to open burning and to assess unburnt residues. To evaluate the fate and transport of the unburnt materials in soil, laboratory-scale soil column transport studies were conducted to gauge the movement of TATB through soil. The results indicate that TATB exhibits a high resistance to burning, leaving unburnt materials that can persist in soil. The study emphasizes the importance of efficient disposal methods for explosives and highlights the need for further research to understand the environmental impact and toxicity of TATB.


Subject(s)
Explosive Agents , Soil , Trinitrobenzenes
SELECTION OF CITATIONS
SEARCH DETAIL
...