Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 8(9): 210916, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34527276

ABSTRACT

A new decomposition algorithm based on QR factorization is introduced for processing and comparing irregularly shaped stress and deformation datasets found in structural analysis. The algorithm improves the comparison of two-dimensional data fields from the surface of components where data is missing from the field of view due to obstructed measurement systems or component geometry that results in areas where no data is present. The technique enables the comparison of these irregularly shaped datasets without the need for interpolation or warping of the data necessary in some other decomposition techniques, for example, Chebyshev or Zernike decomposition. This ensures comparisons are only made between the available data in each dataset and thus similarity metrics are not biased by missing data. The decomposition and comparison technique has been applied during an impact experiment, a modal analysis, and a fatigue study, with the stress and displacement data obtained from finite-element analysis, digital image correlation and thermoelastic stress analysis. The results demonstrate that the technique can be used to process data from a range of sources and suggests the technique has the potential for use in a wide variety of applications.

2.
R Soc Open Sci ; 7(3): 191407, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32269787

ABSTRACT

A novel methodology is introduced for quantifying the severity of damage created during testing in composite components. The method uses digital image correlation combined with image processing techniques to monitor the rate at which the strain field changes during mechanical tests. The methodology is demonstrated using two distinct experimental datasets, a ceramic matrix composite specimen loaded in tension at high temperature and nine polymer matrix composite specimens containing fibre-waviness defects loaded in bending. The changes in the strain field owing to damage creation are shown to be a more effective indicator that the specimen has reached its proportional limit than using load-extension diagrams. The technique also introduces a new approach to using experimental data for creating maps indicating the spatio-temporal distribution of damage in a component. These maps indicate where damage occurs in a component, and provide information about its morphology and its time of occurrence. This presentation format is both easier and faster to interpret than the raw data which, for some tests, can consist of tens of thousands of images. This methodology has the potential to reduce the time taken to interpret large material test datasets while increasing the amount of knowledge that can be extracted from each test.

3.
R Soc Open Sci ; 7(12): 200823, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33489256

ABSTRACT

Thermoelastic stress analysis using arrays of small, low-cost detectors has the potential to be used in structural health monitoring. However, evaluation of the collected data is challenging using traditional methods, due to the lower resolution of these sensors, and the complex loading conditions experienced. An alternative method has been developed, using image decomposition to generate feature vectors which characterize the uncalibrated map of the magnitude of the thermoelastic effect. Thermal data have been collected using a state-of-the-art photovoltaic effect detector and lower cost, lower thermal resolution microbolometer detectors, during crack propagation induced by both constant amplitude and frequency loading, and by idealized flight cycles. The Euclidean distance calculated between the feature vectors of the initial and current state can be used to indicate the presence of damage. Cracks of the order of 1 mm in length can be detected and tracked, with an increase in the rate of change of the Euclidean distance indicating the onset of critical crack propagation. The differential feature vector method therefore represents a substantial advance in technology for monitoring the initiation and propagation of cracks in structures, both in structural testing and in-service using low-cost sensors.

4.
R Soc Open Sci ; 5(5): 180082, 2018 May.
Article in English | MEDLINE | ID: mdl-29892446

ABSTRACT

A new method has been developed for creating localized in-plane fibre waviness in composite coupons and used to create a large batch of specimens. This method could be used by manufacturers to experimentally explore the effect of fibre waviness on composite structures both directly and indirectly to develop and validate computational models. The specimens were assessed using ultrasound, digital image correlation and a novel inspection technique capable of measuring residual strain fields. To explore how the defect affects the performance of composite structures, the specimens were then loaded to failure. Predictions of remnant strength were made using a simple ultrasound damage metric and a new residual strain-based damage metric. The predictions made using residual strain measurements were found to be substantially more effective at characterizing ultimate strength than ultrasound measurements. This suggests that residual strains have a significant effect on the failure of laminates containing fibre waviness and that these strains could be incorporated into computational models to improve their ability to simulate the defect.

SELECTION OF CITATIONS
SEARCH DETAIL
...