Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 786
Filter
1.
Article in English | MEDLINE | ID: mdl-38947180

ABSTRACT

Air pollution is the leading environmental cause of death globally, and most mortality occurs in resource-limited settings such as sub-Saharan Africa. The African continent experiences some of the worst ambient air pollution in the world, yet there are relatively little African data characterizing ambient pollutant levels and source admixtures. In Uganda, ambient PM2.5 levels exceed international health standards. However, most studies focus only on urban environments and do not characterize pollutant sources. We measured daily ambient PM2.5 concentrations and sources in Mbarara, Uganda from May 2018 through February 2019 using Harvard impactors fitted with size-selective inlets. We compared our estimates to publicly available levels in Kampala, and to World Health Organization (WHO) air quality guidelines. We characterized the leading PM2.5 sources in Mbarara using x-ray fluorescence and positive matrix factorization. Daily PM2.5 concentrations were 26.7 µg m-3 and 59.4 µg m-3 in Mbarara and Kampala, respectively (p<0.001). PM2.5 concentrations exceeded WHO guidelines on 58% of days in Mbarara and 99% of days in Kampala. In Mbarara, PM2.5 was higher in the dry as compared to the rainy season (30.8 vs 21.3, p<0.001), while seasonal variation was not observed in Kampala. PM2.5 concentrations did not vary on weekdays versus weekends in either city. In Mbarara, the six main ambient PM2.5 sources identified included (in order of abundance): traffic-related, biomass and secondary aerosols, industry and metallurgy, heavy oil and fuel combustion, fine soil, and salt aerosol. Our findings confirm that air quality in southwestern Uganda is unsafe and that mitigation efforts are urgently needed. Ongoing work focused on improving air quality in the region may have the greatest impact if focused on traffic and biomass-related sources.

2.
Article in English | MEDLINE | ID: mdl-38974963

ABSTRACT

Severe cases of COVID-19 often necessitate escalation to the Intensive Care Unit (ICU), where patients may face grave outcomes, including mortality. Chest X-rays play a crucial role in the diagnostic process for evaluating COVID-19 patients. Our collaborative efforts with Michigan Medicine in monitoring patient outcomes within the ICU have motivated us to investigate the potential advantages of incorporating clinical information and chest X-ray images for predicting patient outcomes. We propose an analytical workflow to address challenges such as the absence of standardized approaches for image pre-processing and data utilization. We then propose an ensemble learning approach designed to maximize the information derived from multiple prediction algorithms. This entails optimizing the weights within the ensemble and considering the common variability present in individual risk scores. Our simulations demonstrate the superior performance of this weighted ensemble averaging approach across various scenarios. We apply this refined ensemble methodology to analyze post-ICU COVID-19 mortality, an occurrence observed in 21% of COVID-19 patients admitted to the ICU at Michigan Medicine. Our findings reveal substantial performance improvement when incorporating imaging data compared to models trained solely on clinical risk factors. Furthermore, the addition of radiomic features yields even larger enhancements, particularly among older and more medically compromised patients. These results may carry implications for enhancing patient outcomes in similar clinical contexts.

3.
Burns Trauma ; 12: tkae016, 2024.
Article in English | MEDLINE | ID: mdl-38882552

ABSTRACT

Background: Platelets play a critical role in hemostasis and inflammatory diseases. Low platelet count and activity have been reported to be associated with unfavorable prognosis. This study aims to explore the relationship between dynamics in platelet count and in-hospital morality among septic patients and to provide real-time updates on mortality risk to achieve dynamic prediction. Methods: We conducted a multi-cohort, retrospective, observational study that encompasses data on septic patients in the eICU Collaborative Research Database (eICU-CRD) and the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. The joint latent class model (JLCM) was utilized to identify heterogenous platelet count trajectories over time among septic patients. We assessed the association between different trajectory patterns and 28-day in-hospital mortality using a piecewise Cox hazard model within each trajectory. We evaluated the performance of our dynamic prediction model through area under the receiver operating characteristic curve, concordance index (C-index), accuracy, sensitivity, and specificity calculated at predefined time points. Results: Four subgroups of platelet count trajectories were identified that correspond to distinct in-hospital mortality risk. Including platelet count did not significantly enhance prediction accuracy at early stages (day 1 C-indexDynamic  vs C-indexWeibull: 0.713 vs 0.714). However, our model showed superior performance to the static survival model over time (day 14 C-indexDynamic  vs C-indexWeibull: 0.644 vs 0.617). Conclusions: For septic patients in an intensive care unit, the rapid decline in platelet counts is a critical prognostic factor, and serial platelet measures are associated with prognosis.

4.
Environ Health ; 23(1): 51, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831396

ABSTRACT

BACKGROUND: Spina bifida, a developmental malformation of the spinal cord, is associated with high rates of mortality and disability. Although folic acid-based preventive strategies have been successful in reducing rates of spina bifida, some areas continue to be at higher risk because of chemical exposures. Bangladesh has high arsenic exposures through contaminated drinking water and high rates of spina bifida. This study examines the relationships between mother's arsenic exposure, folic acid, and spina bifida risk in Bangladesh. METHODS: We conducted a hospital-based case-control study at the National Institute of Neurosciences & Hospital (NINS&H) in Dhaka, Bangladesh, between December 2016 and December 2022. Cases were infants under age one year with spina bifida and further classified by a neurosurgeon and imaging. Controls were drawn from children seen at NINS&H and nearby Dhaka Shishu Hospital. Mothers reported folic acid use during pregnancy, and we assessed folate status with serum assays. Arsenic exposure was estimated in drinking water using graphite furnace atomic absorption spectrophotometry (GF-AAS) and in toenails using inductively coupled plasma mass spectrometry (ICP-MS). We used logistic regression to examine the associations between arsenic and spina bifida. We used stratified models to examine the associations between folic acid and spina bifida at different levels of arsenic exposure. RESULTS: We evaluated data from 294 cases of spina bifida and 163 controls. We did not find a main effect of mother's arsenic exposure on spina bifida risk. However, in stratified analyses, folic acid use was associated with lower odds of spina bifida (adjusted odds ratio [OR]: 0.50, 95% confidence interval [CI]: 0.25-1.00, p = 0.05) among women with toenail arsenic concentrations below the median value of 0.46 µg/g, and no association was seen among mothers with toenail arsenic concentrations higher than 0.46 µg/g (adjusted OR: 1.09, 95% CI: 0.52-2.29, p = 0.82). CONCLUSIONS: Mother's arsenic exposure modified the protective association of folic acid with spina bifida. Increased surveillance and additional preventive strategies, such as folic acid fortification and reduction of arsenic, are needed in areas of high arsenic exposure.


Subject(s)
Arsenic , Folic Acid , Spinal Dysraphism , Humans , Folic Acid/therapeutic use , Bangladesh/epidemiology , Spinal Dysraphism/prevention & control , Spinal Dysraphism/epidemiology , Spinal Dysraphism/chemically induced , Case-Control Studies , Female , Arsenic/analysis , Infant , Male , Adult , Infant, Newborn , Pregnancy , Water Pollutants, Chemical/analysis , Maternal Exposure , Young Adult , Drinking Water/chemistry , Drinking Water/analysis
5.
HGG Adv ; 5(3): 100320, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38902927

ABSTRACT

The KRAS mutation is the most common oncogenic driver in patients with non-small cell lung cancer (NSCLC). However, a detailed understanding of how self-reported race and/or ethnicity (SIRE), genetically inferred ancestry (GIA), and their interaction affect KRAS mutation is largely unknown. Here, we investigated the associations between SIRE, quantitative GIA, and KRAS mutation and its allele-specific subtypes in a multi-ethnic cohort of 3,918 patients from the Boston Lung Cancer Survival cohort and the Chinese OrigiMed cohort with an independent validation cohort of 1,450 patients with NSCLC. This comprehensive analysis included detailed covariates such as age at diagnosis, sex, clinical stage, cancer histology, and smoking status. We report that SIRE is significantly associated with KRAS mutations, modified by sex, with SIRE-Asian patients showing lower rates of KRAS mutation, transversion substitution, and the allele-specific subtype KRASG12C compared to SIRE-White patients after adjusting for potential confounders. Moreover, GIA was found to correlate with KRAS mutations, where patients with a higher proportion of European ancestry had an increased risk of KRAS mutations, especially more transition substitutions and KRASG12D. Notably, among SIRE-White patients, an increase in European ancestry was linked to a higher likelihood of KRAS mutations, whereas an increase in admixed American ancestry was associated with a reduced likelihood, suggesting that quantitative GIA offers additional information beyond SIRE. The association of SIRE, GIA, and their interplay with KRAS driver mutations in NSCLC highlights the importance of incorporating both into population-based cancer research, aiming to refine clinical decision-making processes and mitigate health disparities.


Subject(s)
Alleles , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mutation , Proto-Oncogene Proteins p21(ras) , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/ethnology , Carcinoma, Non-Small-Cell Lung/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Lung Neoplasms/genetics , Lung Neoplasms/ethnology , Lung Neoplasms/pathology , Male , Female , Middle Aged , Aged , Prevalence , Ethnicity/genetics , Racial Groups/genetics , Genetic Predisposition to Disease
6.
PLoS One ; 19(5): e0301131, 2024.
Article in English | MEDLINE | ID: mdl-38739669

ABSTRACT

Lung cancer is the second most diagnosed cancer and the first cause of cancer related death for men and women in the United States. Early detection is essential as patient survival is not optimal and recurrence rate is high. Copy number (CN) changes in cancer populations have been broadly investigated to identify CN gains and deletions associated with the cancer. In this research, the similarities between cancer and paired peripheral blood samples are identified using maximal information coefficient (MIC) and the spatial locations with substantially high MIC scores in each chromosome are used for clustering analysis. The results showed that a sizable reduction of feature set can be obtained using only a subset of locations with high MIC values. The clustering performance was evaluated using both true rate and normalized mutual information (NMI). Clustering results using the reduced feature set outperformed the performance of clustering using entire feature set in several chromosomes that are highly associated with lung cancer with several identified oncogenes.


Subject(s)
DNA Copy Number Variations , Lung Neoplasms , Lung Neoplasms/genetics , Lung Neoplasms/diagnosis , Humans , Cluster Analysis , Female , Male
8.
Transl Lung Cancer Res ; 13(3): 512-525, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38601445

ABSTRACT

Background: Genome-wide association studies (GWASs) explain the genetic susceptibility between diseases and common variants. Nevertheless, with the appearance of large-scale sequencing profiles, we could explore the rare coding variants in disease pathogenesis. Methods: We estimated the genetic correlation of nine respiratory diseases and lung cancer in the UK Biobank (UKB) by linkage disequilibrium score regression (LDSC). Then, we performed exome-wide association studies at single-variant level and gene-level for lung cancer and lung cancer-related respiratory diseases using the whole-exome sequencing (WES) data of 427,934 European participants. Cross-trait meta-analysis was conducted by association analysis based on subsets (ASSET) to identify the pleiotropic variants, while in-silico functional analysis was performed to explore their function. Causal mediation analysis was used to explore whether these pleiotropic variants lead to lung cancer is mediated by affecting the chronic respiratory diseases. Results: Five respiratory diseases [emphysema, pneumonia, asthma, chronic obstructive pulmonary disease (COPD), and fibrosis] were genetically correlated with lung cancer. We identified 102 significant independent variants at single-variant levels for lung cancer and five lung cancer-related diseases. 15:78590583:G>A (missense variant in CHRNA5) was shared in lung cancer, emphysema, and COPD. Meanwhile, 14 significant genes and 87 suggestive genes were identified in gene-based association tests, including HSD3B7 (lung cancer), SRSF2 (pneumonia), TNXB (asthma), TERT (fibrosis), MOSPD3 (emphysema). Based on the cross-trait meta-analysis, we detected 145 independent pleiotropic variants. We further identified abundant pathways with significant enrichment effects, demonstrating that these pleiotropic genes were functional. Meanwhile, the proportion of mediation effects of these variants ranged from 6 to 23 (emphysema: 23%; COPD: 20%; pneumonia: 20%; fibrosis: 7%; asthma: 6%) through these five respiratory diseases to the incidence of lung cancer. Conclusions: The identified shared genetic variants, genes, biological pathways, and potential intermediate causal pathways provide a basis for further exploration of the relationship between lung cancer and respiratory diseases.

9.
Thorax ; 79(7): 680-691, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38631896

ABSTRACT

BACKGROUND: Individual exposure to environmental pollutants, as one of the most influential drivers of respiratory disorders, has received considerable attention due to its preventability and controllability. Considering that the extracellular vesicle (EV) was an emerging intercellular communication medium, recent studies have highlighted the crucial role of environmental pollutants derived EVs (EPE-EVs) in respiratory disorders. METHODS: PubMed and Web of Science were searched from January 2018 to December 2023 for publications with key words of environmental pollutants, respiratory disorders and EVs. RESULTS: Environmental pollutants could disrupt airway intercellular communication by indirectly stimulating airway barrier cells to secrete endogenous EVs, or directly transmitting exogenous EVs, mainly by biological pollutants. Mechanistically, EPE-EVs transferred specific contents to modulate biological functions of recipient cells, to induce respiratory inflammation and impair tissue and immune function, which consequently contributed to the development of respiratory diseases, such as asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, pulmonary hypertension, lung cancer and infectious lung diseases. Clinically, EVs could emerged as promising biomarkers and biological agents for respiratory diseases attributed by their specificity, convenience, sensibility and stability. CONCLUSIONS: Further studies of EPE-EVs are helpful to understand the aetiology and pathology of respiratory diseases, and facilitate the precision respiratory medicine in risk screening, early diagnosis, clinical management and biotherapy.


Subject(s)
Environmental Exposure , Environmental Pollutants , Extracellular Vesicles , Humans , Extracellular Vesicles/metabolism , Environmental Pollutants/toxicity , Environmental Exposure/adverse effects , Respiratory Tract Diseases/chemically induced , Respiratory Tract Diseases/metabolism , Biomarkers/metabolism , Respiration Disorders
10.
Birth Defects Res ; 116(3): e2331, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38526198

ABSTRACT

BACKGROUND: Human studies of genetic risk factors for neural tube defects, severe birth defects associated with long-term health consequences in surviving children, have predominantly been restricted to a subset of candidate genes in specific biological pathways including folate metabolism. METHODS: In this study, we investigated the association of genetic variants spanning the genome with risk of spina bifida (i.e., myelomeningocele and meningocele) in a subset of families enrolled from December 2016 through December 2022 in a case-control study in Bangladesh, a population often underrepresented in genetic studies. Saliva DNA samples were analyzed using the Illumina Global Screening Array. We performed genetic association analyses to compare allele frequencies between 112 case and 121 control children, 272 mothers, and 128 trios. RESULTS: In the transmission disequilibrium test analyses with trios only, we identified three novel exonic spina bifida risk loci, including rs140199800 (SULT1C2, p = 1.9 × 10-7), rs45580033 (ASB2, p = 4.2 × 10-10), and rs75426652 (LHPP, p = 7.2 × 10-14), after adjusting for multiple hypothesis testing. Association analyses comparing cases and controls, as well as models that included their mothers, did not identify genome-wide significant variants. CONCLUSIONS: This study identified three novel single nucleotide polymorphisms involved in biological pathways not previously associated with neural tube defects. The study warrants replication in larger groups to validate findings and to inform targeted prevention strategies.


Subject(s)
Meningocele , Neural Tube Defects , Spinal Dysraphism , Child , Humans , Case-Control Studies , Bangladesh , Spinal Dysraphism/genetics
11.
Res Sq ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38464105

ABSTRACT

Background: Spina bifida, a developmental malformation of the spinal cord, is associated with high rates of mortality and disability. Although folic acid-based preventive strategies have been successful in reducing rates of spina bifida, some areas continue to be at higher risk because of chemical exposures. Bangladesh has high arsenic exposures through contaminated drinking water and high rates of spina bifida. Methods: We conducted a hospital-based case-control study at the National Institute of Neurosciences & Hospital (NINS&H) in Dhaka, Bangladesh, between December 2016 and December 2022. Cases were infants under age one year with spina bifida and further classified using data from observations by neurosurgeons and available imaging. Controls were drawn from children who presented to NINS&H or Dhaka Shishu Hospital (DSH) during the same study period. Mothers reported folic acid use during pregnancy, and we assessed folate status with serum assays. Arsenic exposure was estimated in drinking water using graphite furnace atomic absorption spectrophotometry (GF-AAS) and in toenails using inductively coupled plasma mass spectrometry (ICP-MS). Results: We evaluated data from 294 cases of spina bifida and 163 controls. We did not find a main effect of mother's arsenic exposure on spina bifida risk. However, in stratified analyses, folic acid use was associated with lower odds of spina bifida (adjusted odds ratio [OR]: 0.50, 95% confidence interval [CI]: 0.25-1.00, p = 0.05) among women with toenail arsenic concentrations below the median, and no association was seen among mothers with toenail arsenic concentrations higher than median (adjusted OR: 1.09, 95% CI: 0.52-2.29, p = 0.82). Conclusions: Mother's arsenic exposure modified the protective association of folic acid with spina bifida. Increased surveillance and additional preventive strategies, such as folic acid fortification and reduction of arsenic, are needed in areas of high arsenic exposure.

12.
Environ Res ; 252(Pt 1): 118745, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38527716

ABSTRACT

Exposure to cadmium may increase risk of urolithiasis, but the results remain inconclusive. This systematic review and meta-analysis aimed to access the association between cadmium exposure and urolithiasis. We searched Medline/PubMed, Embase, Web of Science Core Collection, and Cochrane Central for studies. The primary outcome was the incidence of urolithiasis compared to reference groups. We used relative risk as the summary effect measure. This meta-analysis included eight observational studies and divided into 39 study populations. Among 63,051 subjects, 5018 (7.96%) individuals had urolithiasis. The results indicated that people with an increment of 0.1 µg/g creatinine in urinary cadmium had a 2% increased risk of urolithiasis (pooled relative risk [RR], 1.02; 95% confidence interval [CI], 1.01-1.03) and there is no difference in the risk of urolithiasis in high and low cadmium exposure levels. Meanwhile, people with an increment of 0.1 µg/L in urinary cadmium had a 4% increased risk of urolithiasis (pooled RR, 1.04; 95% CI, 1.02-1.07). Our findings also showed similar associations in both sex, different region (Sweden, China, and Thailand), general and occupational population. The results indicate that cadmium exposure was significantly associated with an elevated risk of urolithiasis. Therefore, it is imperative to take steps to minimize cadmium exposure.


Subject(s)
Cadmium , Urolithiasis , Urolithiasis/chemically induced , Urolithiasis/urine , Urolithiasis/epidemiology , Cadmium/urine , Humans , Environmental Exposure/analysis , Environmental Exposure/adverse effects , Environmental Pollutants/urine
13.
iScience ; 27(2): 108985, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38333712

ABSTRACT

Plasma proteins are promising biomarkers and potential drug targets in lung cancer. To evaluate the causal association between plasma proteins and lung cancer, we performed proteome-wide Mendelian randomization meta-analysis (PW-MR-meta) based on lung cancer genome-wide association studies (GWASs), protein quantitative trait loci (pQTLs) of 4,719 plasma proteins in deCODE and 4,775 in Fenland. Further, causal-protein risk score (CPRS) was developed based on causal proteins and validated in the UK Biobank. 270 plasma proteins were identified using PW-MR meta-analysis, including 39 robust causal proteins (both FDR-q < 0.05) and 78 moderate causal proteins (FDR-q < 0.05 in one and p < 0.05 in another). The CPRS had satisfactory performance in risk stratification for lung cancer (top 10% CPRS:Hazard ratio (HR) (95%CI):4.33(2.65-7.06)). The CPRS [AUC (95%CI): 65.93 (62.91-68.78)] outperformed the traditional polygenic risk score (PRS) [AUC (95%CI): 55.71(52.67-58.59)]. Our findings offer further insight into the genetic architecture of plasma proteins for lung cancer susceptibility.

14.
Biometrics ; 80(1)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38412302

ABSTRACT

Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective patient-centered therapies. The National Lung Screening Trial (NLST) employed computed tomography texture analysis, which provides objective measurements of texture patterns on CT scans, to quantify the mortality risks of lung cancer patients. Partially linear Cox models have gained popularity for survival analysis by dissecting the hazard function into parametric and nonparametric components, allowing for the effective incorporation of both well-established risk factors (such as age and clinical variables) and emerging risk factors (eg, image features) within a unified framework. However, when the dimension of parametric components exceeds the sample size, the task of model fitting becomes formidable, while nonparametric modeling grapples with the curse of dimensionality. We propose a novel Penalized Deep Partially Linear Cox Model (Penalized DPLC), which incorporates the smoothly clipped absolute deviation (SCAD) penalty to select important texture features and employs a deep neural network to estimate the nonparametric component of the model. We prove the convergence and asymptotic properties of the estimator and compare it to other methods through extensive simulation studies, evaluating its performance in risk prediction and feature selection. The proposed method is applied to the NLST study dataset to uncover the effects of key clinical and imaging risk factors on patients' survival. Our findings provide valuable insights into the relationship between these factors and survival outcomes.


Subject(s)
Lung Neoplasms , Humans , Proportional Hazards Models , Lung Neoplasms/diagnostic imaging , Survival Analysis , Linear Models , Tomography, X-Ray Computed/methods
15.
J Allergy Clin Immunol ; 153(5): 1194-1205, 2024 May.
Article in English | MEDLINE | ID: mdl-38309598

ABSTRACT

Climate change is not just jeopardizing the health of our planet but is also increasingly affecting our immune health. There is an expanding body of evidence that climate-related exposures such as air pollution, heat, wildfires, extreme weather events, and biodiversity loss significantly disrupt the functioning of the human immune system. These exposures manifest in a broad range of stimuli, including antigens, allergens, heat stress, pollutants, microbiota changes, and other toxic substances. Such exposures pose a direct and indirect threat to our body's primary line of defense, the epithelial barrier, affecting its physical integrity and functional efficacy. Furthermore, these climate-related environmental stressors can hyperstimulate the innate immune system and influence adaptive immunity-notably, in terms of developing and preserving immune tolerance. The loss or failure of immune tolerance can instigate a wide spectrum of noncommunicable diseases such as autoimmune conditions, allergy, respiratory illnesses, metabolic diseases, obesity, and others. As new evidence unfolds, there is a need for additional research in climate change and immunology that covers diverse environments in different global settings and uses modern biologic and epidemiologic tools.


Subject(s)
Climate Change , Humans , Animals , Immune Tolerance , Immunity, Innate , Environmental Exposure/adverse effects , Adaptive Immunity
16.
Genome Med ; 16(1): 22, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38317189

ABSTRACT

BACKGROUND: Although polygenic risk score (PRS) has emerged as a promising tool for predicting cancer risk from genome-wide association studies (GWAS), the individual-level accuracy of lung cancer PRS and the extent to which its impact on subsequent clinical applications remains largely unexplored. METHODS: Lung cancer PRSs and confidence/credible interval (CI) were constructed using two statistical approaches for each individual: (1) the weighted sum of 16 GWAS-derived significant SNP loci and the CI through the bootstrapping method (PRS-16-CV) and (2) LDpred2 and the CI through posteriors sampling (PRS-Bayes), among 17,166 lung cancer cases and 12,894 controls with European ancestry from the International Lung Cancer Consortium. Individuals were classified into different genetic risk subgroups based on the relationship between their own PRS mean/PRS CI and the population level threshold. RESULTS: Considerable variances in PRS point estimates at the individual level were observed for both methods, with an average standard deviation (s.d.) of 0.12 for PRS-16-CV and a much larger s.d. of 0.88 for PRS-Bayes. Using PRS-16-CV, only 25.0% of individuals with PRS point estimates in the lowest decile of PRS and 16.8% in the highest decile have their entire 95% CI fully contained in the lowest and highest decile, respectively, while PRS-Bayes was unable to find any eligible individuals. Only 19% of the individuals were concordantly identified as having high genetic risk (> 90th percentile) using the two PRS estimators. An increased relative risk of lung cancer comparing the highest PRS percentile to the lowest was observed when taking the CI into account (OR = 2.73, 95% CI: 2.12-3.50, P-value = 4.13 × 10-15) compared to using PRS-16-CV mean (OR = 2.23, 95% CI: 1.99-2.49, P-value = 5.70 × 10-46). Improved risk prediction performance with higher AUC was consistently observed in individuals identified by PRS-16-CV CI, and the best performance was achieved by incorporating age, gender, and detailed smoking pack-years (AUC: 0.73, 95% CI = 0.72-0.74). CONCLUSIONS: Lung cancer PRS estimates using different methods have modest correlations at the individual level, highlighting the importance of considering individual-level uncertainty when evaluating the practical utility of PRS.


Subject(s)
Genetic Risk Score , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Bayes Theorem , Genome-Wide Association Study , Uncertainty , Risk Assessment , Risk Factors , Genetic Predisposition to Disease
17.
Cancer Epidemiol Biomarkers Prev ; 33(3): 389-399, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38180474

ABSTRACT

BACKGROUND: Clinical, molecular, and genetic epidemiology studies displayed remarkable differences between ever- and never-smoking lung cancer. METHODS: We conducted a stratified multi-population (European, East Asian, and African descent) association study on 44,823 ever-smokers and 20,074 never-smokers to identify novel variants that were missed in the non-stratified analysis. Functional analysis including expression quantitative trait loci (eQTL) colocalization and DNA damage assays, and annotation studies were conducted to evaluate the functional roles of the variants. We further evaluated the impact of smoking quantity on lung cancer risk for the variants associated with ever-smoking lung cancer. RESULTS: Five novel independent loci, GABRA4, intergenic region 12q24.33, LRRC4C, LINC01088, and LCNL1 were identified with the association at two or three populations (P < 5 × 10-8). Further functional analysis provided multiple lines of evidence suggesting the variants affect lung cancer risk through excessive DNA damage (GABRA4) or cis-regulation of gene expression (LCNL1). The risk of variants from 12 independent regions, including the well-known CHRNA5, associated with ever-smoking lung cancer was evaluated for never-smokers, light-smokers (packyear ≤ 20), and moderate-to-heavy-smokers (packyear > 20). Different risk patterns were observed for the variants among the different groups by smoking behavior. CONCLUSIONS: We identified novel variants associated with lung cancer in only ever- or never-smoking groups that were missed by prior main-effect association studies. IMPACT: Our study highlights the genetic heterogeneity between ever- and never-smoking lung cancer and provides etiologic insights into the complicated genetic architecture of this deadly cancer.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/epidemiology , Lung Neoplasms/genetics , Smokers , Genome-Wide Association Study , Research Design , Smoking/adverse effects
18.
Nat Rev Clin Oncol ; 21(2): 121-146, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38195910

ABSTRACT

Lung cancer is the most common cause of cancer-related deaths globally. Although smoking-related lung cancers continue to account for the majority of diagnoses, smoking rates have been decreasing for several decades. Lung cancer in individuals who have never smoked (LCINS) is estimated to be the fifth most common cause of cancer-related deaths worldwide in 2023, preferentially occurring in women and Asian populations. As smoking rates continue to decline, understanding the aetiology and features of this disease, which necessitate unique diagnostic and treatment paradigms, will be imperative. New data have provided important insights into the molecular and genomic characteristics of LCINS, which are distinct from those of smoking-associated lung cancers and directly affect treatment decisions and outcomes. Herein, we review the emerging data regarding the aetiology and features of LCINS, particularly the genetic and environmental underpinnings of this disease as well as their implications for treatment. In addition, we outline the unique diagnostic and therapeutic paradigms of LCINS and discuss future directions in identifying individuals at high risk of this disease for potential screening efforts.


Subject(s)
Lung Neoplasms , Humans , Female , Lung Neoplasms/etiology , Lung Neoplasms/genetics , Smoke , Risk Factors , Smoking/adverse effects , Smoking/epidemiology
19.
Cancer ; 130(6): 913-926, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38055287

ABSTRACT

BACKGROUND: Although the associations between genetic variations and lung cancer risk have been explored, the epigenetic consequences of DNA methylation in lung cancer development are largely unknown. Here, the genetically predicted DNA methylation markers associated with non-small cell lung cancer (NSCLC) risk by a two-stage case-control design were investigated. METHODS: The genetic prediction models for methylation levels based on genetic and methylation data of 1595 subjects from the Framingham Heart Study were established. The prediction models were applied to a fixed-effect meta-analysis of screening data sets with 27,120 NSCLC cases and 27,355 controls to identify the methylation markers, which were then replicated in independent data sets with 7844 lung cancer cases and 421,224 controls. Also performed was a multi-omics functional annotation for the identified CpGs by integrating genomics, epigenomics, and transcriptomics and investigation of the potential regulation pathways. RESULTS: Of the 29,894 CpG sites passing the quality control, 39 CpGs associated with NSCLC risk (Bonferroni-corrected p ≤ 1.67 × 10-6 ) were originally identified. Of these, 16 CpGs remained significant in the validation stage (Bonferroni-corrected p ≤ 1.28 × 10-3 ), including four novel CpGs. Multi-omics functional annotation showed nine of 16 CpGs were potentially functional biomarkers for NSCLC risk. Thirty-five genes within a 1-Mb window of 12 CpGs that might be involved in regulatory pathways of NSCLC risk were identified. CONCLUSIONS: Sixteen promising DNA methylation markers associated with NSCLC were identified. Changes of the methylation level at these CpGs might influence the development of NSCLC by regulating the expression of genes nearby. PLAIN LANGUAGE SUMMARY: The epigenetic consequences of DNA methylation in lung cancer development are still largely unknown. This study used summary data of large-scale genome-wide association studies to investigate the associations between genetically predicted levels of methylation biomarkers and non-small cell lung cancer risk at the first time. This study looked at how well larotrectinib worked in adult patients with sarcomas caused by TRK fusion proteins. These findings will provide a unique insight into the epigenetic susceptibility mechanisms of lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Adult , Humans , Carcinoma, Non-Small-Cell Lung/genetics , DNA Methylation , Lung Neoplasms/genetics , Genome-Wide Association Study , Epigenesis, Genetic , Biomarkers , CpG Islands
20.
Chest ; 165(3): 653-668, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37977263

ABSTRACT

BACKGROUND: Nebulizers are used commonly for inhaled drug delivery. Because they deliver medication through aerosol generation, clarification is needed on what constitutes safe aerosol delivery in infectious respiratory disease settings. The COVID-19 pandemic highlighted the importance of understanding the safety and potential risks of aerosol-generating procedures. However, evidence supporting the increased risk of disease transmission with nebulized treatments is inconclusive, and inconsistent guidelines and differing opinions have left uncertainty regarding their use. Many clinicians opt for alternative devices, but this practice could impact outcomes negatively, especially for patients who may not derive full treatment benefit from handheld inhalers. Therefore, it is prudent to develop strategies that can be used during nebulized treatment to minimize the emission of fugitive aerosols, these comprising bioaerosols exhaled by infected individuals and medical aerosols generated by the device that also may be contaminated. This is particularly relevant for patient care in the context of a highly transmissible virus. RESEARCH QUESTION: How can potential risks of infections during nebulization be mitigated? STUDY DESIGN AND METHODS: The COPD Foundation Nebulizer Consortium (CNC) was formed in 2020 to address uncertainties surrounding administration of nebulized medication. The CNC is an international, multidisciplinary collaboration of patient advocates, pulmonary physicians, critical care physicians, respiratory therapists, clinical scientists, and pharmacists from research centers, medical centers, professional societies, industry, and government agencies. The CNC developed this expert guidance to inform the safe use of nebulized therapies for patients and providers and to answer key questions surrounding medication delivery with nebulizers during pandemics or when exposure to common respiratory pathogens is anticipated. RESULTS: CNC members reviewed literature and guidelines regarding nebulization and developed two sets of guidance statements: one for the health care setting and one for the home environment. INTERPRETATION: Future studies need to explore the risk of disease transmission with fugitive aerosols associated with different nebulizer types in real patient care situations and to evaluate the effectiveness of mitigation strategies.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Humans , Administration, Inhalation , Pandemics/prevention & control , Respiratory Aerosols and Droplets , Nebulizers and Vaporizers , Pulmonary Disease, Chronic Obstructive/drug therapy , Bronchodilator Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...