Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Acta Neuropathol Commun ; 11(1): 177, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37936247

ABSTRACT

Epithelial membrane protein 3 (EMP3) is an N-glycosylated tetraspanin with a putative trafficking function. It is highly expressed in isocitrate dehydrogenase-wild-type glioblastoma (IDH-wt GBM), and its high expression correlates with poor survival. However, the exact trafficking role of EMP3 and how it promotes oncogenic signaling in GBM remain unclear. Here, we show that EMP3 promotes EGFR/CDK2 signaling by regulating the trafficking and enhancing the stability of EGFR. BioID2-based proximity labeling revealed that EMP3 interacts with endocytic proteins involved in the vesicular transport of EGFR. EMP3 knockout (KO) enhances epidermal growth factor (EGF)-induced shuttling of EGFR into RAB7 + late endosomes, thereby promoting EGFR degradation. Increased EGFR degradation is rescued by the RAB7 negative regulator and novel EMP3 interactor TBC1D5. Phosphoproteomic and transcriptomic analyses further showed that EMP3 KO converges into the inhibition of the cyclin-dependent kinase CDK2 and the repression of EGFR-dependent and cell cycle transcriptional programs. Phenotypically, EMP3 KO cells exhibit reduced proliferation rates, blunted mitogenic response to EGF, and increased sensitivity to the pan-kinase inhibitor staurosporine and the EGFR inhibitor osimertinib. Furthermore, EGFR-dependent patient-derived glioblastoma stem cells display a transcriptomic signature consistent with reduced CDK2 activity, as well as increased susceptibility to CDK2 inhibition upon EMP3 knockdown. Lastly, using TCGA data, we showed that GBM tumors with high EMP3 expression have increased total and phosphorylated EGFR levels. Collectively, our findings demonstrate a novel EMP3-dependent mechanism by which EGFR/CDK2 activity is sustained in GBM. Consequently, EMP3's stabilizing effect provides an additional layer of tumor cell resistance against targeted kinase inhibition.


Subject(s)
Epidermal Growth Factor , Glioblastoma , Humans , Epidermal Growth Factor/pharmacology , Glioblastoma/pathology , Signal Transduction , ErbB Receptors/metabolism , Cell Proliferation , Cell Line, Tumor , Cyclin-Dependent Kinase 2/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , GTPase-Activating Proteins
2.
Methods Mol Biol ; 2593: 317-322, 2023.
Article in English | MEDLINE | ID: mdl-36513941

ABSTRACT

Traditional immunofluorescence (IF) imaging assays are limited to the detection of just a few markers due to spectral overlap of fluorescent emission bands. Furthermore, standard fluorescent imaging instruments have a dynamic range that is too narrow to capture the full range of expression values seen in biology, precluding the accurate quantification of single-cell target expression. Here we describe a protocol for detection and quantification of dozens of protein targets with single-cell quantitative precision using an iterative staining approach called ChipCytometry™.


Subject(s)
Diagnostic Imaging , Proteins , Fluorescent Antibody Technique , Staining and Labeling , Spatial Analysis
3.
Int J Mol Sci ; 22(3)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498319

ABSTRACT

The presence and interaction of immune cells in the tumor microenvironment is of significant importance and has a great impact on disease progression and response to therapy. Hence, their identification is of high interest for prognosis and treatment decisions. Besides detailed phenotypic analyses of immune, as well as tumor cells, spatial analyses is an important parameter in the complex interplay of neoplastic and immune cells-especially when moving into focus efforts to develop and validate new therapeutic strategies. Ex vivo analysis of tumor samples by immunohistochemistry staining methods conserves spatial information is restricted to single markers, while flow cytometry (disrupting tissue into single cell suspensions) provides access to markers in larger numbers. Nevertheless, this comes at the cost of scarifying morphological information regarding tissue localization and cell-cell contacts. Further detrimental effects incurred by, for example, tissue digestion include staining artifacts. Consequently, ongoing efforts are directed towards methods that preserve, completely or in part, spatial information, while increasing the number of markers that can potentially be interrogated to the level of conventional flow cytometric methods. Progression in multiplex immunohistochemistry in the last ten years overcame the limitation to 1-2 markers in classical staining methods using DAB with counter stains or even pure chemical staining methods. In this study, we compared the multiplex method Chipcytometry to flow cytometry and classical IHCP using DAB and hematoxylin. Chipcytometry uses frozen or paraffin-embedded tissue sections stained with readily available commercial fluorophore-labeled antibodies in repetitive cycles of staining and bleaching. The iterative staining approach enables sequential analysis of a virtually unlimited number of markers on the same sample, thereby identifying immune cell subpopulations in the tumor microenvironment in the present study in a humanized mouse melanoma model.


Subject(s)
Melanoma/immunology , Tumor Microenvironment/immunology , Animals , Cell Line, Tumor , Cells, Cultured , Female , Flow Cytometry/methods , HLA-A2 Antigen/genetics , HLA-A2 Antigen/immunology , Humans , Immunohistochemistry/methods , Immunophenotyping/methods , Melanoma/pathology , Mice , Middle Aged , Transgenes
4.
Cell Rep Methods ; 1(7): 100104, 2021 11 22.
Article in English | MEDLINE | ID: mdl-35475000

ABSTRACT

Deciphering the spatial composition of cells in tissues is essential for detailed understanding of biological processes in health and disease. Recent technological advances enabled the assessment of the enormous complexity of tissue-derived parameters by highly multiplexed tissue imaging (HMTI), but elaborate machinery and data analyses are required. This severely limits broad applicability of HMTI. Here we demonstrate for the first time the application of ChipCytometry technology, which has unique features for widespread use, on formalin-fixed paraffin-embedded samples, the most commonly used storage technique of clinically relevant patient specimens worldwide. The excellent staining quality permits workflows for automated quantification of signal intensities, which we further optimized to compensate signal spillover from neighboring cells. In combination with the high number of validated markers, the reported platform can be used from unbiased analyses of tissue composition to detection of phenotypically complex rare cells, and can be easily implemented in both routine research and clinical pathology.


Subject(s)
Formaldehyde , Humans , Tissue Fixation/methods , Paraffin Embedding/methods
5.
Eur J Hum Genet ; 28(12): 1681-1693, 2020 12.
Article in English | MEDLINE | ID: mdl-32737436

ABSTRACT

Although over 50 genes are known to cause renal malformation if mutated, the underlying genetic basis, most easily identified in syndromic cases, remains unsolved in most patients. In search of novel causative genes, whole-exome sequencing in a patient with renal, i.e., crossed fused renal ectopia, and extrarenal, i.e., skeletal, eye, and ear, malformations yielded a rare heterozygous variant in the GDF6 gene encoding growth differentiation factor 6, a member of the BMP family of ligands. Previously, GDF6 variants were reported to cause pleiotropic defects including skeletal, e.g., vertebral, carpal, tarsal fusions, and ocular, e.g., microphthalmia and coloboma, phenotypes. To assess the role of GDF6 in the pathogenesis of renal malformation, we performed targeted sequencing in 193 further patients identifying rare GDF6 variants in two cases with kidney hypodysplasia and extrarenal manifestations. During development, gdf6 was expressed in the pronephric tubule of Xenopus laevis, and Gdf6 expression was observed in the ureteric tree of the murine kidney by RNA in situ hybridization. CRISPR/Cas9-derived knockout of Gdf6 attenuated migration of murine IMCD3 cells, an effect rescued by expression of wild-type but not mutant GDF6, indicating affected variant function regarding a fundamental developmental process. Knockdown of gdf6 in Xenopus laevis resulted in impaired pronephros development. Altogether, we identified rare heterozygous GDF6 variants in 1.6% of all renal anomaly patients and 5.4% of renal anomaly patients additionally manifesting skeletal, ocular, or auricular abnormalities, adding renal hypodysplasia and fusion to the phenotype spectrum of GDF6 variant carriers and suggesting an involvement of GDF6 in nephrogenesis.


Subject(s)
Growth Differentiation Factor 6/genetics , Urogenital Abnormalities/genetics , Vesico-Ureteral Reflux/genetics , Adolescent , Adult , Animals , Cell Line , Child , Child, Preschool , Female , Growth Differentiation Factor 6/metabolism , Heterozygote , Humans , Infant , Kidney Tubules/abnormalities , Kidney Tubules/metabolism , Male , Mice , Mutation , Urogenital Abnormalities/pathology , Vesico-Ureteral Reflux/pathology , Xenopus
6.
Acta Neuropathol Commun ; 7(1): 156, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31623667

ABSTRACT

The detection of IDH mutations in patients with diffusely infiltrating malignant astrocytomas resulted in substantial modifications in the concept of WHO classification of these tumors. An important underlying observation was that patients with anaplastic astrocytomas (AA) without IDH mutation had a clinical course similar to that of patients with glioblastomas (GBM). The underlying observations of the German Glioma Network and NOA-04, however, were based on mixed patient cohorts. While most GBM patients received combined radiochemotherapy, patients with AA usually had radiotherapy or chemotherapy only. This intrinsic shortcoming of the study raised the question of whether patients with AA, IDH wildtype, WHO grade III, might have better prognosis if treated with combined radiochemotherapy than patients with GBM receiving the same combination therapy. Thus, the question remains whether the established histopathological grading criteria for malignant astrocytomas in the absence of an IDH mutation are still important if neither vascular proliferation nor necrosis are detectable. All patients in the cohort investigated here with the diagnosis of AA or GBM were subjected to a combined radiochemotherapy according to the Stupp protocol independently of the histopathological diagnosis. Thus, the analysis of these patients allows to clarify whether patients with AA, IDH wildtype, WHO grade III have a prognosis similar to that of GBM, IDH wildtype, WHO grade IV, even under equivalent therapeutic conditions. We determined the IDH1 and IDH2 status by sequencing, the MGMT status by pyrosequencing after bisulfite treatment and the EGFR status of the patients by FISH. In fact, the patients with the histopathological diagnosis of an AA IDH wild-type under similar aggressive therapy showed a comparable and therefore no better prognosis (median overall survival (mOS) 16 months) than patients with a GBM (mOS 13 months). Instead, patients with an AA and an IDH mutation receiving the same therapy had a mOS of 54 months. Thus, it can be concluded that in the absence of an IDH mutation, the established histopathological grading criteria 'necrosis' and 'vascular proliferation' actually lose their prognostic significance. If, on the other hand, patients with malignant astrocytomas and an IDH mutation are examined, there is still a difference between patients with necrosis and/or vascular proliferation and those whose tumors do not show such characteristics. Accordingly, in patients with malignant astrocytomas with IDH mutation it can be concluded that a histological differentiation between AA IDH mutated and GBM IDH mutated remains beneficial from a prognostic perspective.


Subject(s)
Astrocytoma/diagnosis , Astrocytoma/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Glioblastoma/diagnosis , Glioblastoma/genetics , Isocitrate Dehydrogenase/genetics , Adult , Aged , Astrocytoma/therapy , Brain Neoplasms/therapy , Combined Modality Therapy , Female , Glioblastoma/therapy , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Mutation , Prognosis
7.
Int J Cancer ; 145(2): 461-473, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30614533

ABSTRACT

Epithelial Membrane Protein 3 (EMP3), a 4-transmembrane glycoprotein, first gained attention as a putative tumor suppressor. Accumulating evidence, however, points to a more tumor promotive function of EMP3. The biological function of EMP3 remains largely unclear. To elucidate more of EMP3's interaction network, we performed a Yeast-Two-Hybrid (Y2H) screening, followed by validation of candidate interactors by Biomolecular Fluorescence Complementation (BiFC) and Proximity Ligation Assay (PLA). Furthermore, we generated stable EMP3 knockdown cell lines and measured cell proliferation, migration and sensitivity to apoptosis induction as well as the expression and activation levels of important signal pathway components. The Y2H screening yielded 10 novel interactions of EMP3, eight of which could also be detected by BiFC and PLA interaction assays. All newly discovered interaction partners are involved in signaling or trafficking regulation. Most notably, FLOT1 and HTATIP2 have well described roles in the regulation of EGFR signaling. In addition, knockdown of EMP3 resulted in reduced levels of p-AKT, p-ERK and p-EGFR, attenuated cell proliferation and migration and sensitized cells to apoptosis induction by TRAIL and Staurosporine. Based on these observations we hypothesize that EMP3 might be involved in the regulation of receptor-tyrosine-kinase mediated mitogenic signaling.


Subject(s)
Fibrosarcoma/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Protein Interaction Mapping/methods , Signal Transduction , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Survival , ErbB Receptors/metabolism , Gene Knockdown Techniques , HEK293 Cells , Humans , MAP Kinase Signaling System , Proto-Oncogene Proteins c-akt/metabolism , Two-Hybrid System Techniques
8.
Acta Neurochir (Wien) ; 160(11): 2237-2248, 2018 11.
Article in English | MEDLINE | ID: mdl-30203362

ABSTRACT

BACKGROUND: Glioblastomas (GBM) are localized in only less than 1% of patients in the cerebellum. Therefore, tumor characteristics, survival, and the efficacy of therapies are not yet well defined. The present study aims to characterize the molecular features of cerebellar GBM (GBMc) in 8 patients treated with contemporary modality in our institution. METHODS: Patients' treatment history, progression-free survival (PFS), and overall survival (OS) were analyzed. All histopathological specimens were re-investigated. EGFR amplification was determined by FISH, H3F3A, and HIST1H3B mutation status and MGMT promoter methylation after bisulfite treatment by pyrosequencing and BRAF V600E by pyrosequencing and immunohistochemistry. TERT promoter mutations were analyzed by Sanger sequencing, CDKN2A/B deletions by digital PCR. The expression of IDH1 R132H, ATRX, and p53 was determined through immunohistochemistry. RESULTS: Six adults and two children (mean age 36 years) underwent tumor resection via medial or lateral suboccipital craniotomy. The median overall survival (mOS) of the adult patients was 7 months. GBMc from two children demonstrated a H3F3A K27M mutation. One of these also harbored a BRAF V600E mutation and has already had a PFS of 74 months. Mutated IDH1 R132H protein was expressed in 2 GBM from adult patients with previous supratentorial anaplastic astrocytoma. One patient carried a TERT promoter mutation. Another patient initially presented with a thalamic pilocytic astrocytoma. The cerebellar tumor revealed neither a BRAF V600E nor a H3F3A mutation but a homozygous CDKN2A/B deletion. CONCLUSIONS: GBM located in the cerebellum can be found in all age groups. We provide novel molecular genetic data on these rare tumors. Mutated IDH1 R132H protein and H3F3A K27M mutations indicate that a substantial number of GBMc are "metastatic" or "diaschismatic" lesions. Mutation of BRAF V600E may have a stronger biological significance than H3F3A K27M alterations. In a subset of patients, GBM may arise primarily as a distinct entity in the cerebellum.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/pathology , Glioblastoma/pathology , Mutation , Adult , Brain Neoplasms/genetics , Child , Cyclin-Dependent Kinase Inhibitor p16/genetics , Female , Glioblastoma/genetics , Humans , Isocitrate Dehydrogenase/genetics , Male , Middle Aged , Proto-Oncogene Proteins B-raf/genetics , Telomerase/genetics , Tumor Suppressor Protein p53/genetics , X-linked Nuclear Protein/genetics
10.
Acta Neuropathol ; 134(6): 905-922, 2017 12.
Article in English | MEDLINE | ID: mdl-29030706

ABSTRACT

In search of novel germline alterations predisposing to tumors, in particular to gliomas, we studied a family with two brothers affected by anaplastic gliomas, and their father and paternal great-uncle diagnosed with prostate carcinoma. In this family, whole-exome sequencing yielded rare, simultaneously heterozygous variants in the Aicardi-Goutières syndrome (AGS) genes ADAR and RNASEH2B co-segregating with the tumor phenotype. AGS is a genetically induced inflammatory disease particularly of the brain, which has not been associated with a consistently increased cancer risk to date. By targeted sequencing, we identified novel ADAR and RNASEH2B variants, and a 3- to 17-fold frequency increase of the AGS mutations ADAR,c.577C>G;p.(P193A) and RNASEH2B,c.529G>A;p.(A177T) in the germline of familial glioma patients as well as in test and validation cohorts of glioblastomas and prostate carcinomas versus ethnicity-matched controls, whereby rare RNASEH2B variants were significantly more frequent in familial glioma patients. Tumors with ADAR or RNASEH2B variants recapitulated features of AGS, such as calcification and increased type I interferon expression. Patients carrying ADAR or RNASEH2B variants showed upregulation of interferon-stimulated gene (ISG) transcripts in peripheral blood as seen in AGS. An increased ISG expression was also induced by ADAR and RNASEH2B variants in tumor cells and was blocked by the JAK inhibitor Ruxolitinib. Our data implicate rare variants in the AGS genes ADAR and RNASEH2B and a type I interferon signature in glioma and prostate carcinoma risk and tumorigenesis, consistent with a genetic basis underlying inflammation-driven malignant transformation in glioma and prostate carcinoma development.


Subject(s)
Adenosine Deaminase/genetics , Genetic Predisposition to Disease , Interferon Type I/metabolism , Neoplasms/genetics , Neoplasms/metabolism , RNA-Binding Proteins/genetics , Ribonuclease H/genetics , Adenosine Deaminase/metabolism , Adult , Animals , Cells, Cultured , Cohort Studies , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Female , Fibroblasts/metabolism , Humans , Isocitrate Dehydrogenase/genetics , Male , Mice, Knockout , Molecular Dynamics Simulation , Neoplasms/drug therapy , Neoplasms/pathology , Phenotype , Polymorphism, Single Nucleotide , Protein Stability , RNA-Binding Proteins/metabolism , Tumor Suppressor Proteins/genetics
11.
Diagn Pathol ; 11(1): 55, 2016 Jun 27.
Article in English | MEDLINE | ID: mdl-27350555

ABSTRACT

BACKGROUND: Treatment options for oncological diseases have been enhanced by the advent of targeted therapies. The point mutation of the BRAF gene at codon 600 (BRAF V600E) is found in several tumor entities and can be approached with selective inhibitory antibodies. The BRAF inhibitor vemurafenib has demonstrated clinical efficacy in patients with BRAF V600E-mutant melanoma brain metastases and in other cancer diseases. Therefore the BRAF V600E mutation is a highly interesting oncological target in brain tumors. METHODS: This study assesses the BRAF V600E mutation status in 969 intracranial neoplasms using a tissue microarray method and immunohistochemical staining with the mutation-specific VE-1 antibody, followed by sequencing of positively stained cases. RESULTS: Out of 784 primary brain tumors seven cases with a BRAF V600E mutation were detected (7/784, 1 %). Six of these cases were neuroepithelial tumors (6/667, 1 %) encompassing 2 astrocytomas WHO grade II (2/42, 5 %), 1 gliosarcoma WHO grade IV (1/75, 1 %) and 3 glioblastomas WHO grade IV (3/312, 1 %). Interestingly, all three mutant glioblastomas showed epithelioid histopathological features. Patients with V600E mutated astrocytic tumors were significantly younger (mean age 15.3 years) than wildtype cases (58.2 years). Among three rhabdoid meningiomas, one case was mutated (1/3) while all other grade I-III meningiomas (1/116, 1 %) and all fifty vestibular schwannomas analyzed were of wildtype status. The vast majority of the BRAF V600E mutations were found in cerebral metastases of malignant melanomas and carcinomas (29/135, 22 %), with false-positive staining found in four breast cancer cases and two non-small-cell lung carcinoma (NSCLC) samples. CONCLUSIONS: Our data suggest routine screening for BRAF V600E mutations for glioblastomas WHO grade IV below the age of 30, especially in glioblastomas with epithelioid features and in all rhabdoid meningiomas WHO grade III. For colorectal carcinoma, thyroid cancer, malignant melanoma and gliomas BRAF V600E immunostaining is sufficient for screening purposes. We also recommend routine immunohistochemical staining followed by sequencing validation in rare CNS metastases or metastases of unknown primary. Immunohistochemical analysis using mutation-specific antibodies on tissue microarrays is a feasible, time- and cost-efficient approach to high-throughput screening for specific mutations in large tumor series but sequencing validation is necessary in unexpected cases.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma/genetics , Central Nervous System Neoplasms/genetics , Point Mutation , Proto-Oncogene Proteins B-raf/genetics , Adolescent , Adult , Age Factors , Aged , Astrocytoma/genetics , Carcinoma/secondary , Central Nervous System Neoplasms/secondary , Child , Colorectal Neoplasms/genetics , Glioblastoma/genetics , Humans , Melanoma/genetics , Middle Aged , Skin Neoplasms , Thyroid Neoplasms/genetics , Young Adult , Melanoma, Cutaneous Malignant
12.
J Neurooncol ; 109(1): 15-22, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22528790

ABSTRACT

Mutations in the gene encoding isocitrate dehydrogenase 1 (IDH1) have been identified in approximately 70-80 % of astrocytomas and oligodendrogliomas of WHO grades II and III, and in secondary glioblastomas. In addition, a low incidence of IDH2 mutations has been detected in these tumors, and the occurence of IDH1 and IDH2 mutations is mutually exclusive. For patients with anaplastic gliomas and glioblastomas with IDH1 mutations, overall survival was significantly longer than for patients with wild-type tumours. However, the prognostic value of IDH1 in low-grade gliomas remains ambiguous. IDH1 codon 132 and IDH2 codon 172 mutation status were determined by direct sequencing for a retrospective series of 100 patients with histologically diagnosed Astrocytomas WHO Grad II (A II), and investigated for association with patient outcome. For the patient cohort analysed, median progression-free survival (PFS) was 44.6 months (95 %-CI 1.0-267.0), time to progression (median time to malignant progression (TtMP) was 74.9 months (95 %-CI 1.6-236.2), and median overall survival (OS) was 81.4 months (95 %-CI 5.5-274.8). IDH1 mutations were identified in 79 % of the patients. IDH2 mutations were not observed. Univariate and multivariate analysis revealed no association between IDH1 mutation status and PFS, TtMP, and OS. Furthermore, there were no significant differences regarding PFS, TtMP, and OS between patients with and without IDH1 mutations who did not receive adjuvant treatment. The prognostic value of IDH1 mutations in low-grade astrocytomas is rather low compared with that in high-grade gliomas.


Subject(s)
Astrocytoma/genetics , Brain Neoplasms/genetics , Isocitrate Dehydrogenase/genetics , Mutation/genetics , Adult , Aged , Aged, 80 and over , Astrocytoma/mortality , Astrocytoma/pathology , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Neoplasm Grading , Prognosis , Retrospective Studies , Survival Rate , World Health Organization
13.
PLoS One ; 7(3): e33449, 2012.
Article in English | MEDLINE | ID: mdl-22428052

ABSTRACT

Hypermethylation in the promoter region of the MGMT gene encoding the DNA repair protein O(6)-methylguanine-DNA methyltransferase is among the most important prognostic factors for patients with glioblastoma and predicts response to treatment with alkylating agents like temozolomide. Hence, the MGMT status is widely determined in most clinical trials and frequently requested in routine diagnostics of glioblastoma. Since various different techniques are available for MGMT promoter methylation analysis, a generally accepted consensus as to the most suitable diagnostic method remains an unmet need. Here, we assessed methylation-specific polymerase chain reaction (MSP) as a qualitative and semi-quantitative method, pyrosequencing (PSQ) as a quantitative method, and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) as a semi-quantitative method in a series of 35 formalin-fixed, paraffin-embedded glioblastoma tissues derived from patients treated in a prospective clinical phase II trial that tested up-front chemoradiotherapy with dose-intensified temozolomide (UKT-05). Our goal was to determine which of these three diagnostic methods provides the most accurate prediction of progression-free survival (PFS). The MGMT promoter methylation status was assessable by each method in almost all cases (n = 33/35 for MSP; n = 35/35 for PSQ; n = 34/35 for MS-MLPA). We were able to calculate significant cut-points for the continuous methylation signals at each CpG site analysed by PSQ (range, 11.5 to 44.9%) and at one CpG site assessed by MS-MLPA (3.6%) indicating that a dichotomisation of continuous methylation data as a prerequisite for comparative survival analyses is feasible. Our results show that, unlike MS-MLPA, MSP and PSQ provide a significant improvement of predicting PFS compared with established clinical prognostic factors alone (likelihood ratio tests: p<0.001). Conclusively, taking into consideration prognostic value, cost effectiveness and ease of use, we recommend pyrosequencing for analyses of MGMT promoter methylation in high-throughput settings and MSP for clinical routine diagnostics with low sample numbers.


Subject(s)
DNA Methylation/genetics , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Glioblastoma/diagnosis , Polymerase Chain Reaction/methods , Promoter Regions, Genetic/genetics , Sequence Analysis, DNA/methods , Tumor Suppressor Proteins/genetics , DNA Modification Methylases/metabolism , DNA Primers/genetics , DNA Repair Enzymes/metabolism , Dacarbazine/analogs & derivatives , Disease-Free Survival , Glioblastoma/drug therapy , Glioblastoma/genetics , Humans , Kaplan-Meier Estimate , Likelihood Functions , Molecular Probe Techniques , Nucleic Acid Amplification Techniques/methods , Prognosis , Prospective Studies , Temozolomide , Tumor Suppressor Proteins/metabolism
14.
Brain Pathol ; 20(2): 298-300, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19744125

ABSTRACT

Hotspot mutations in codon 132 of the gene encoding isocitrate dehydrogenase 1 (IDH1) have emerged as the most frequent DNA alteration in astrocytomas, oligodendrogliomas and oligoastrocytomas. These mutations have been shown to be of significant diagnostic and prognostic value. So far, assessment of IDH1 mutation relied on DNA sequencing techniques. We generated a set of primers suitable for endonuclease-based detection of hotspot mutations in codon 132 of IDH1. This primer set will allow determining these mutations without the need of DNA sequencing. One set of primer sets is designed to detect the presence or absence of IDH1 mutations in codon 132, while the other primer sets individually recognize the R132H, R132C, R132S, R132G and R132L mutations.


Subject(s)
Isocitrate Dehydrogenase/genetics , Mutation , Polymerase Chain Reaction/methods , Restriction Mapping/methods , Amino Acid Sequence , Codon , DNA Primers , Humans , Molecular Sequence Data , Mutation, Missense
15.
Acta Neuropathol ; 118(4): 469-74, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19554337

ABSTRACT

Somatic mutations in the IDH1 gene encoding cytosolic NADP+-dependent isocitrate dehydrogenase have been shown in the majority of astrocytomas, oligodendrogliomas and oligoastrocytomas of WHO grades II and III. IDH2 encoding mitochondrial NADP+-dependent isocitrate dehydrogenase is also mutated in these tumors, albeit at much lower frequencies. Preliminary data suggest an importance of IDH1 mutation for prognosis showing that patients with anaplastic astrocytomas, oligodendrogliomas and oligoastrocytomas harboring IDH1 mutations seem to fare much better than patients without this mutation in their tumors. To determine mutation types and their frequencies, we examined 1,010 diffuse gliomas. We detected 716 IDH1 mutations and 31 IDH2 mutations. We found 165 IDH1 (72.7%) and 2 IDH2 mutations (0.9%) in 227 diffuse astrocytomas WHO grade II, 146 IDH1 (64.0%) and 2 IDH2 mutations (0.9%) in 228 anaplastic astrocytomas WHO grade III, 105 IDH1 (82.0%) and 6 IDH2 mutations (4.7%) in 128 oligodendrogliomas WHO grade II, 121 IDH1 (69.5%) and 9 IDH2 mutations (5.2%) in 174 anaplastic oligodendrogliomas WHO grade III, 62 IDH1 (81.6%) and 1 IDH2 mutations (1.3%) in 76 oligoastrocytomas WHO grade II and 117 IDH1 (66.1%) and 11 IDH2 mutations (6.2%) in 177 anaplastic oligoastrocytomas WHO grade III. We report on an inverse association of IDH1 and IDH2 mutations in these gliomas and a non-random distribution of the mutation types within the tumor entities. IDH1 mutations of the R132C type are strongly associated with astrocytoma, while IDH2 mutations predominantly occur in oligodendroglial tumors. In addition, patients with anaplastic glioma harboring IDH1 mutations were on average 6 years younger than those without these alterations.


Subject(s)
Brain Neoplasms/genetics , Glioma/genetics , Isocitrate Dehydrogenase/genetics , Adult , Age Factors , Brain/pathology , Brain Neoplasms/enzymology , Brain Neoplasms/pathology , Cell Differentiation , DNA Mutational Analysis , Female , Glioma/enzymology , Glioma/pathology , Humans , Male , Middle Aged , Mutation , Prognosis , Tumor Cells, Cultured
16.
Acta Neuropathol ; 118(3): 401-5, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19543740

ABSTRACT

Separation of pilocytic astrocytoma from diffuse astrocytomas frequently poses problems mostly related to small sample size. Precise classification and grading are essential due to different therapeutic strategies prompted by diagnoses of pilocytic astrocytoma WHO grade I, diffuse astrocytomas WHO grade II or anaplastic astrocytoma WHO grade III. Recently, genomic aberrations with a high specificity for distinct glioma entities have been described. Pilocytic astrocytomas carry a duplication at chromosome band 7q34 containing a BRAF-KIAA1549 gene fusion in the majority of cases. IDH1 mutations are observed very frequently in adult astrocytomas and IDH2 mutations have been reported in some astrocytomas. We examined a series of 120 astrocytomas including 70 pilocytic astrocytomas WHO grade I and 50 diffuse astrocytomas WHO grade II for both, BRAF-KIAA1549 fusion with a newly developed FISH assay and mutations in IDH1 and IDH2 by direct sequencing. Pilocytic astrocytomas contained the BRAF fusion in 49 cases (70%) but neither IDH1 nor IDH2 mutations. Astrocytomas WHO grade II exhibited IDH1 mutations in 38 cases (76%) but neither IDH2 mutations nor BRAF fusions. Thus, combined molecular analysis of BRAF and IDH1 is a sensitive and highly specific approach to separate pilocytic astrocytoma from diffuse astrocytoma.


Subject(s)
Astrocytoma/diagnosis , Brain Neoplasms/diagnosis , Isocitrate Dehydrogenase/genetics , Proto-Oncogene Proteins B-raf/genetics , Adolescent , Adult , Aged , Astrocytoma/genetics , Biomarkers, Tumor , Brain Neoplasms/genetics , Child , Child, Preschool , Diagnosis, Differential , Female , Humans , In Situ Hybridization, Fluorescence , Male , Middle Aged , Mutation , Tissue Array Analysis
17.
Anal Chim Acta ; 586(1-2): 73-81, 2007 Mar 14.
Article in English | MEDLINE | ID: mdl-17386698

ABSTRACT

With this feasibility study a first step towards a new monitoring system for hormonal treatments was done. Screening of regulation and function of anabolic sex steroids via modified gene expression of mRNA in various tissues could be a new approach to trace treatments with unknown drugs or newly combined cocktails. In the study, uterus, liver and muscle tissue from 24 cycling heifers were taken after the animals were treated either with Melengestrol Acetate (MGA), Finaplix-H (200 mg Trenbolone Acetate) or Ralgro (36 mg Zeranol) for 56 days. In every treatment group always two heifers were given 1-fold, 3-fold and 10-fold doses of the standard preparation, the control group without any treatment consisted of two animals. The different tissue gene expression profiles were investigated via the candidate gene approach. Totally 57 candidate genes were selected according to their functionality by screening the actual literature and composed to functional groups: angiogenesis, apoptosis, cell cycle, endocrine factors, energy metabolism, inflammatory factors, muscle function, oncogenes, protein metabolism and transcription factors. Gene expression was measured using quantitative real-time RT-PCR (qRT-PCR) technology. From 24 tested candidate genes in the liver, 17 showed a significant regulation. Eight genes were influenced by MGA, 9 by Finaplix-H, and 4 by Ralgro. For the muscle tissue 19 genes were tested with the result that in the neck muscle 11 genes were regulated and in the hind limb muscle 8 genes. In the neck 5 genes were affected by MGA, 6 by Finaplix-H and 3 by Ralgro. Only 2 genes were influenced by MGA in the hind limb muscle. Finaplix-H affected 6 and Ralgro 4 genes. In the uterus 29 target genes were tested and 13 were significantly influenced by the anabolic sex steroids. Under Finaplix-H treatment eight target genes were regulated and Ralgro and MGA showed a significant regulation in four target genes. The highest gene expression changes under anabolic treatment were observed in the uterus. The analyzed genes showed significant regulations but further studies, testing different animal husbandry conditions will be needed to identify meaningful expression patterns for the different tissues. With the investigation of the regulation and possible function of anabolic sex steroids via gene expression, a preparatory work for the development of an expression pattern for drug screening was made.


Subject(s)
Anabolic Agents/analysis , Biomarkers/analysis , Gene Expression Regulation/drug effects , RNA, Messenger/analysis , Anabolic Agents/chemistry , Animals , Cattle , Feasibility Studies , Female , Liver/metabolism , Melengestrol Acetate/analysis , Melengestrol Acetate/chemistry , Muscles/metabolism , RNA, Messenger/metabolism , Trace Elements/analysis , Trenbolone Acetate/analogs & derivatives , Trenbolone Acetate/analysis , Trenbolone Acetate/chemistry , Uterus/metabolism , Zeranol/analysis , Zeranol/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...