Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Ecology ; 105(1): e4191, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37878669

ABSTRACT

Climate is assumed to strongly influence species distribution and abundance. Although the performance of many organisms is influenced by the climate in their immediate proximity, the climate data used to model their distributions often have a coarse spatial resolution. This is problematic because the local climate experienced by individuals might deviate substantially from the regional average. This problem is likely to be particularly important for sessile organisms like plants and in environments where small-scale variation in climate is large. To quantify the effect of local temperature on vital rates and population growth rates, we used temperature values measured at the local scale (in situ logger measures) and integral projection models with demographic data from 37 populations of the forest herb Lathyrus vernus across a wide latitudinal gradient in Sweden. To assess how the spatial resolution of temperature data influences assessments of climate effects, we compared effects from models using local data with models using regionally aggregated temperature data at several spatial resolutions (≥1 km). Using local temperature data, we found that spring frost reduced the asymptotic population growth rate in the first of two annual transitions and influenced survival in both transitions. Only one of the four regional estimates showed a similar negative effect of spring frost on population growth rate. Our results for a perennial forest herb show that analyses using regionally aggregated data often fail to identify the effects of climate on population dynamics. This emphasizes the importance of using organism-relevant estimates of climate when examining effects on individual performance and population dynamics, as well as when modeling species distributions. For sessile organisms that experience the environment over small spatial scales, this will require climate data at high spatial resolutions.


Subject(s)
Climate Change , Climate , Humans , Forests , Population Dynamics , Seasons , Plants
2.
Conserv Biol ; 36(3): e13847, 2022 06.
Article in English | MEDLINE | ID: mdl-34622491

ABSTRACT

Conservation of biodiversity in managed forest landscapes needs to be complemented with new approaches given the threat from rapid climate change. Most frameworks for adaptation of biodiversity conservation to climate change include two major strategies. The first is the resistance strategy, which focuses on actions to increase the capacity of species and communities to resist change. The second is the transformation strategy and includes actions that ease the transformation of communities to a set of species that are well adapted to the novel environmental conditions. We suggest a number of concrete actions policy makers and managers can take. Under the resistance strategy, five tools are introduced, including: identifying and protecting forest climate refugia with cold-favored species; reducing the effects of drought by protecting the hydrological network; and actively removing competitors when they threaten cold-favored species. Under the transformation strategy, we suggest three tools, including: enhancing conditions for forest species favored by the new climate, but currently disfavored by forest management, by planting them at suitable sites outside their main range; and increasing connectivity across the landscape to enhance the expansion of warm-favored species to sites that have become suitable. Finally, we suggest applying a landscape perspective and simultaneously managing for both retreating and expanding species. The two different strategies (resistance and transformation) should be seen as complementary ways to maintain a rich biodiversity in future forest ecosystems.


Adaptación Climática de la Conservación de la Biodiversidad en Paisajes Forestales Gestionados Resumen La conservación de la biodiversidad en los paisajes forestales gestionados necesita complementarse con estrategias nuevas debido a la amenaza del cambio climático acelerado. La mayoría de los marcos de trabajo para la adaptación de la conservación de la biodiversidad ante el cambio climático incluye dos estrategias principales. La primera es la estrategia de resistencia, la cual se enfoca en acciones para incrementar la capacidad de las especies y comunidades para resistir el cambio. La segunda es la estrategia de transformación e incluye acciones que facilitan la transformación de las comunidades a un conjunto de especies que están bien adaptadas a las nuevas condiciones ambientales. Sugerimos un número de acciones concretas que los gestores y los formuladores de políticas pueden tomar. Bajo la estrategia de resistencia, introducimos cinco herramientas, incluyendo: identificación y protección de los refugios climáticos forestales con especies favorecidas por el frío, reducción de los efectos de la sequía mediante la protección de la red hidrológica y extirpación activa de los competidores cuando amenacen a las especies favorecidas por el frío. Bajo la estrategia de transformación, sugerimos tres herramientas, incluyendo: mejorar las condiciones para las especies forestales favorecidas por el nuevo clima pero actualmente desfavorecidas por la gestión forestal, mediante su siembra en sitios adecuados fuera de su distribución principal e incrementando la conectividad en el paisaje para incrementar la expansión de las especies favorecidas por el calor hacia sitios que se han vuelto más adecuados. Finalmente, sugerimos aplicar una perspectiva de paisaje y gestionar simultáneamente tanto para las especies en retirada y en expansión. Las dos estrategias diferentes (resistencia y transformación) deberían considerarse como maneras complementarias para mantener una biodiversidad rica en los ecosistemas forestales del futuro.


Subject(s)
Conservation of Natural Resources , Ecosystem , Biodiversity , Climate Change , Forests
3.
Glob Chang Biol ; 27(11): 2279-2297, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33725415

ABSTRACT

Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land-use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.


Subject(s)
Climate Change , Microclimate , Biodiversity , Ecosystem , Forests , Trees
4.
Front Plant Sci ; 9: 66, 2018.
Article in English | MEDLINE | ID: mdl-29456545

ABSTRACT

European freshwater habitats have experienced a severe loss of plant diversity, regionally and locally, over the last century or more. One important and well-established driver of change is eutrophication, which has increased with rising population density and agricultural intensification. However, reduced disturbance of lake margins may have played an additional key role. The geographical variation in water chemistry, which has set the scene for - and interacted with - anthropogenic impact, is much less well understood. We took advantage of some recently completed regional plant distribution surveys, relying on hundreds of skilled citizen scientists, and analyzed the hydrophyte richness to environment relations in five contiguous South-Scandinavian regions. For three of the regions, we also assessed changes to the freshwater flora over the latest 50-80 years. We found a considerable variation in background total phosphorus concentrations and alkalinity, both within and between regions. The prevalence of functional groups differed between regions in accordance with the environmental conditions and the species' tolerance to turbid waters. Similarly, the historical changes within regions followed the same trend in correspondence to the altered environmental conditions over time. Small submerged species decreased relative to tall submerged and floating-leaved species along the regional and historical eutrophication gradients. These changes were accompanied by systematically greater relative abundance of species of higher phosphorus prevalence. We conclude that species traits in close correspondence with anthropogenic impacts are the main determinants of local, regional and historical changes of species distribution and occupancy, while pure biogeography plays a minor role. Conservation measures, such as re-oligotrophication and re-established disturbance regimes through grazing and water level fluctuations, may help reduce the tall reed vegetation, restore the former richness of the freshwater flora and safeguard red-listed species, although extended time delays are anticipated in nutrient-rich regions, in which species only survive at minute abundance in isolated refugia.

SELECTION OF CITATIONS
SEARCH DETAIL
...