Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 112(4): 581-91, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16395570

ABSTRACT

DNA-based molecular markers have been used in numerous studies for tagging specific genes in wheat for subsequent use in marker-assisted selection. Usually in plant breeding, procedures for mapping genes are based on analysis of a single segregating population. However, breeding programmes routinely evaluate large numbers of progeny derived from multiple-related crosses with some parental lines shared. In most such related crosses, the number of progeny is quite small. Thus, statistical techniques for detecting quantitative trait loci (QTLs) using data from conventional multi-cross breeding programmes are interesting. The objective of this study is to present a mixture model for QTL mapping in crosses of multiple inbred varieties with non-normal phenotype distributions and to use this model to map QTLs for yellow rust resistance in elite wheat breeding material. Three doubled haploid populations consisting of 41, 42 and 55 lines, respectively, originating from four parental varieties were studied. Multi-cross QTL analysis with three specific pathogen isolates of Puccinia striiformis f. sp. tritici and a mixture of the isolates revealed QTLs for resistance at four different genomic locations. These QTLs were found on chromosome 2AL, 2AS, 2BL and 6BL and explained between 21 and 41% of the phenotypic variation. Two of these QTLs, one on the long arm of chromosome 2A and one on the short arm of chromosome 2A were identical to the known yellow rust resistance genes Yr32 and Yr17, respectively, whereas the QTLs located on the long arms of chromosomes 2B and 6B may reflect types of resistance to yellow rust, which have not previously been mapped.


Subject(s)
Basidiomycota/genetics , Immunity, Innate/genetics , Phenotype , Plant Diseases/microbiology , Ploidies , Triticum/genetics , Basidiomycota/pathogenicity , Breeding , Chromosome Mapping , Chromosomes, Plant/genetics , Crosses, Genetic , Plant Diseases/genetics , Quantitative Trait Loci , Triticum/microbiology
3.
Theor Appl Genet ; 108(3): 567-75, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14523516

ABSTRACT

Stripe or yellow rust of wheat, caused by Puccinia striiformis f. sp. tritici, is an important disease in many wheat-growing regions of the world. A number of major genes providing resistance to stripe rust have been used in breeding, including one gene that is present in the differential tester Carstens V. The objective of this study was to locate and map a stripe rust resistance gene transferred from Carstens V to Avocet S and to use molecular tools to locate a number of genes segregating in the cross Savannah/Senat. One of the genes present in Senat was predicted to be a gene that is present in Carstens V. For this latter purpose, stripe rust response data from both seedling and field tests on a doubled haploid population consisting of 77 lines were compared to an available molecular map for the same lines using a non-parametric quantitative trait loci (QTL) analysis. Results obtained in Denmark suggested that a strong component of resistance with the specificity of Carstens V was located in chromosome arm 2AL, and this was consistent with chromosome location work undertaken in Australia. Since this gene segregated independently of Yr1, the only other stripe rust resistance gene known to be located in this chromosome arm, it was designated Yr32. Further QTLs originating from Senat were located in chromosomes 1BL, 4D, and 7DS and from Savannah on 5B, but it was not possible to characterize them as unique resistance genes in any definitive way. Yr32 was detected in several wheats, including the North American differential tester Tres.


Subject(s)
Basidiomycota , Chromosome Mapping , Immunity, Innate/genetics , Plant Diseases/microbiology , Quantitative Trait Loci/genetics , Triticum/genetics , Australia , Denmark , Species Specificity , Triticum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...