Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Diabetes ; 67(5): 923-935, 2018 05.
Article in English | MEDLINE | ID: mdl-29472249

ABSTRACT

Improved mouse models for type 1 diabetes (T1D) therapy development are needed. T1D susceptibility is restored to normally resistant NOD.ß2m-/- mice transgenically expressing human disease-associated HLA-A*02:01 or HLA-B*39:06 class I molecules in place of their murine counterparts. T1D is dependent on pathogenic CD8+ T-cell responses mediated by these human class I variants. NOD.ß2m-/--A2.1 mice were previously used to identify ß-cell autoantigens presented by this human class I variant to pathogenic CD8+ T cells and for testing therapies to attenuate such effectors. However, NOD.ß2m-/- mice also lack nonclassical MHC I family members, including FcRn, required for antigen presentation, and maintenance of serum IgG and albumin, precluding therapies dependent on these molecules. Hence, we used CRISPR/Cas9 to directly ablate the NOD H2-Kd and H2-Db classical class I variants either individually or in tandem (cMHCI-/-). Ablation of the H2-Ag7 class II variant in the latter stock created NOD mice totally lacking in classical murine MHC expression (cMHCI/II-/-). NOD-cMHCI-/- mice retained nonclassical MHC I molecule expression and FcRn activity. Transgenic expression of HLA-A2 or -B39 restored pathogenic CD8+ T-cell development and T1D susceptibility to NOD-cMHCI-/- mice. These next-generation HLA-humanized NOD models may provide improved platforms for T1D therapy development.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Disease Models, Animal , HLA-A2 Antigen/genetics , HLA-B Antigens/genetics , Mice , beta 2-Microglobulin/genetics , Animals , CRISPR-Cas Systems , Diabetes Mellitus, Type 1/therapy , Histocompatibility Antigens Class I/genetics , Humans , Mice, Inbred NOD , Mice, Knockout , Mice, Transgenic
2.
Proc Natl Acad Sci U S A ; 114(14): E2862-E2871, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28330995

ABSTRACT

The neonatal crystallizable fragment receptor (FcRn) is responsible for maintaining the long half-life and high levels of the two most abundant circulating proteins, albumin and IgG. In the latter case, the protective mechanism derives from FcRn binding to IgG in the weakly acidic environment contained within endosomes of hematopoietic and parenchymal cells, whereupon IgG is diverted from degradation in lysosomes and is recycled. The cellular location and mechanism by which FcRn protects albumin are partially understood. Here we demonstrate that mice with global or liver-specific FcRn deletion exhibit hypoalbuminemia, albumin loss into the bile, and increased albumin levels in the hepatocyte. In vitro models with polarized cells illustrate that FcRn mediates basal recycling and bidirectional transcytosis of albumin and uniquely determines the physiologic release of newly synthesized albumin into the basal milieu. These properties allow hepatic FcRn to mediate albumin delivery and maintenance in the circulation, but they also enhance sensitivity to the albumin-bound hepatotoxin, acetaminophen (APAP). As such, global or liver-specific deletion of FcRn results in resistance to APAP-induced liver injury through increased albumin loss into the bile and increased intracellular albumin scavenging of reactive oxygen species. Further, protection from injury is achieved by pharmacologic blockade of FcRn-albumin interactions with monoclonal antibodies or peptide mimetics, which cause hypoalbuminemia, biliary loss of albumin, and increased intracellular accumulation of albumin in the hepatocyte. Together, these studies demonstrate that the main function of hepatic FcRn is to direct albumin into the circulation, thereby also increasing hepatocyte sensitivity to toxicity.


Subject(s)
Albumins/metabolism , Chemical and Drug Induced Liver Injury/genetics , Histocompatibility Antigens Class I/metabolism , Receptors, Fc/metabolism , Acetaminophen/adverse effects , Acetaminophen/metabolism , Animals , Bile/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Dogs , Female , Hepatocytes/metabolism , Histocompatibility Antigens Class I/genetics , Homeostasis , Madin Darby Canine Kidney Cells , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Mutant Strains , Receptors, Fc/genetics , Serum Albumin, Human/genetics , Serum Albumin, Human/metabolism , Transcytosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...