Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Contam Hydrol ; 248: 104001, 2022 06.
Article in English | MEDLINE | ID: mdl-35367711

ABSTRACT

Field-deployed lysimeters were used to measure the concentrations of poly- and perfluoroalkyl substances (PFASs) in soil porewater at a site historically impacted with aqueous film forming foam (AFFF). Samples collected over a 49-day period showed that perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) were the PFASs with the highest concentrations in porewater, with concentrations of approximately 10,000 and 25,000 ng L-1, respectively. The corresponding average mass flux to underlying groundwater observed for PFOS and PFHxS was 28,000 ± 11,000 and 92,000 ± 32,000 ng m-2 d-1, respectively. Employing the use of batch desorption isotherms (soil:water slurries) to determine desorption Kd values resulted in an overestimation of PFAS porewater concentrations by a factor for 1.4 to 4. However, using the desorption Kd values from the batch desorption isotherms in combination with a PFAS mass balance that incorporated PFAS sorption at the air-water interface resulted in improved predictions of the PFAS porewater concentrations. This improvement was most notable for PFOS, where inclusion of air-water interfacial sorption resulted in a 58% reduction in the predicted PFOS porewater concentration and predicted PFOS porewater concentrations that were identical (within the 95% confidence interval) to the lysimeter measured PFOS porewater concentration. Overall these results highlight the potentially important role of air-water interfacial sorption on PFAS migration in AFFF-impacted unsaturated soils in an in situ field setting.


Subject(s)
Fluorocarbons , Groundwater , Water Pollutants, Chemical , Fluorocarbons/analysis , Soil , Water , Water Pollutants, Chemical/analysis
2.
Pharmacol Ther ; 225: 107837, 2021 09.
Article in English | MEDLINE | ID: mdl-33753133

ABSTRACT

Vaping is the process of inhaling and exhaling an aerosol produced by an e-cigarette, vape pen, or personal aerosolizer. When the device contains nicotine, the Food and Drug Administration (FDA) lists the product as an electronic nicotine delivery system or ENDS device. Similar electronic devices can be used to vape cannabis extracts. Over the past decade, the vaping market has increased exponentially, raising health concerns over the number of people exposed and a nationwide outbreak of cases of severe, sometimes fatal, lung dysfunction that arose suddenly in otherwise healthy individuals. In this review, we discuss the various vaping technologies, which are remarkably diverse, and summarize the use prevalence in the U.S. over time by youths and adults. We examine the complex chemistry of vape carrier solvents, flavoring chemicals, and transformation products. We review the health effects from epidemiological and laboratory studies and, finally, discuss the proposed mechanisms underlying some of these health effects. We conclude that since much of the research in this area is recent and vaping technologies are dynamic, our understanding of the health effects is insufficient. With the rapid growth of ENDS use, consumers and regulatory bodies need a better understanding of constituent-dependent toxicity to guide product use and regulatory decisions.


Subject(s)
Vaping , Chemistry , Humans , Toxicology , Vaping/adverse effects
3.
Toxics ; 9(3)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652875

ABSTRACT

The biological impacts of per- and polyfluorinated alkyl substances (PFAS) are linked to their protein interactions. Existing research has largely focused on serum albumin and liver fatty acid binding protein, and binding affinities determined with a variety of methods show high variability. Moreover, few data exist for short-chain PFAS, though their prevalence in the environment is increasing. We used molecular dynamics (MD) to screen PFAS binding to liver and intestinal fatty acid binding proteins (L- and I-FABPs) and peroxisome proliferator activated nuclear receptors (PPAR-α, -δ and -γ) with six perfluoroalkyl carboxylates (PFCAs) and three perfluoroalkyl sulfonates (PFSAs). Equilibrium dissociation constants, KDs, were experimentally determined via equilibrium dialysis (EqD) with liquid chromatography tandem mass spectrometry for protein-PFAS pairs. A comparison was made between KDs derived from EqD, both here and in literature, and other in vitro approaches (e.g., fluorescence) from literature. EqD indicated strong binding between PPAR-δ and perfluorobutanoate (0.044 ± 0.013 µM) and perfluorohexane sulfonate (0.035 ± 0.0020 µM), and between PPAR-α and perfluorohexanoate (0.097 ± 0.070 µM). Unlike binding affinities for L-FABP, which increase with chain length, KDs for PPARs showed little chain length dependence by either MD simulation or EqD. Compared with other in vitro approaches, EqD-based KDs consistently indicated higher affinity across different proteins. This is the first study to report PPARs binding with short-chain PFAS with KDs in the sub-micromolar range.

4.
Environ Toxicol Chem ; 40(3): 677-688, 2021 03.
Article in English | MEDLINE | ID: mdl-31944348

ABSTRACT

Toxicity reference values for per- and polyfluoroalkyl substances (PFAS) vary even when the same test organism is studied. Although the need to confirm dosing solution concentrations is widely accepted, there are no experimental data to inform best practices when PFAS solutions are prepared. Laboratory data indicate that dissolution time of PFAS solids causes statistically significant deviations between nominal and measured concentrations. Mixing times for select PFAS varied between 2 and 5 h, depending on carbon fluorine chain-length. Environ Toxicol Chem 2021;40:677-688. © 2020 SETAC.


Subject(s)
Fluorocarbons , Carboxylic Acids , Ecotoxicology , Fluorine , Fluorocarbons/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...