Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 81(2): 203-10, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-20888325

ABSTRACT

Prostate cancer cells can exist in a hypoxic microenvironment, causing radioresistance. Nitric oxide (NO) is a radiosensitiser of mammalian cells. NO-NSAIDs are a potential means of delivering NO to prostate cancer cells. This study aimed to determine the effect and mechanism of action of NO-sulindac and radiation, on prostate cancer cells and stroma, under normoxia (21% oxygen) and chronic hypoxia (0.2% oxygen). Using clonogenic assays, at a surviving fraction of 10% the sensitisation enhancement ratios of radiation plus NO-sulindac over radiation alone on PC-3 cells were 1.22 and 1.42 under normoxia and hypoxia, respectively. 3D culture of PC-3 cells revealed significantly reduced sphere diameter in irradiated spheres treated with NO-sulindac. Neither NO-sulindac nor sulindac radiosensitised prostate stromal cells under normoxia or hypoxia. HIF-1α protein levels were reduced by NO-sulindac exposure and radiation at 21 and 0.2% oxygen. Alkaline Comet assay analysis suggested an increased rate of single strand DNA breaks and slower repair of these lesions in PC-3 cells treated with NO-sulindac prior to irradiation. There was a higher level of γ-H2AX production and hence double strand DNA breaks following irradiation of NO-sulindac treated PC-3 cells. At all radiation doses and oxygen levels tested, treatment of 2D and 3D cultures of PC-3 cells with NO-sulindac prior to irradiation radiosensitised PC-3, with minimal effect on stromal cells. Hypoxia response inhibition and increased DNA double strand breaks are potential mechanisms of action. Neoadjuvent and concurrent use of NO-NSAIDs have the potential to improve radiotherapy treatment of prostate cancer under normoxia and hypoxia.


Subject(s)
DNA Breaks/drug effects , Hypoxia/metabolism , Nitric Oxide Donors/pharmacology , Oxygen/metabolism , Prostatic Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Cell Line , DNA Repair/drug effects , Dose-Response Relationship, Radiation , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Nitric Oxide/metabolism , Prostate/cytology , Prostatic Neoplasms/metabolism , Radiation-Sensitizing Agents/pharmacology , Stromal Cells/drug effects , Stromal Cells/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...