Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 148(17): 4064-4071, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37469285

ABSTRACT

Droplet-based microfluidics and digital polymerase chain reaction (PCR) hold significant promise for accurately detecting and quantifying pathogens. However, existing droplet-based digital PCR (ddPCR) applications have been relying exclusively on single emulsion droplets. Single emulsion droplets may not be suitable for applications such as identifying the source and pathways of water contamination where the templates must be protected against harsh environmental conditions. In this study, we developed a core-shell particle to serve as a protective framework for DNAs, with potential applications in digital PCR. We employed a high-throughput and facile flow-focusing microfluidic device to generate liquid beads, core-shell particles with liquid cores, which provided precise control over process parameters and consequently particle characteristics. Notably, the interfacial interaction between the core and shell liquids could be adjusted without adding surfactants to either phase. As maintaining stability is essential for ensuring the accuracy of digital PCR (dPCR), we investigated parameters that affect the stability of core-shell droplets, including surfactants in the continuous phase and core density. As a proof of concept, we encapsulated a series of human faecal DNA samples in the core-shell droplets and the subsequent liquid beads. The core-shell particles ensure contamination-free encapsulation of DNA in the core. The volume of the core droplets containing the PCR mixture is only 0.12 nL. Our experimental results indicate that the liquid beads formulated using our technique can amplify the encapsulated DNA and be used for digital PCR without interfering with the fluorescence signal. We successfully demonstrated the ability to detect and quantify DNA under varying concentrations. These findings provide new insights and a step change in digital PCR that could benefit various applications, including the detection and tracking of environmental pollution.


Subject(s)
DNA , Microfluidics , Humans , Emulsions , Polymerase Chain Reaction/methods , DNA/genetics , Lab-On-A-Chip Devices
2.
Micromachines (Basel) ; 11(8)2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32784703

ABSTRACT

Multiplex polymerase chain reaction (PCR) is an effective tool for simultaneous detection of target genes. Nevertheless, their use has been restricted due to the intrinsic interference between primer pairs. Performing several single PCRs in an array format instead of a multiplex PCR is a simple way to overcome this obstacle. However, there are still major technical challenges in designing a new generation of single PCR microreactors with a small sample volume, rapid thermal cycling, and no evaporation during amplification. We report a simple and robust core-shell bead array for a series of single amplifications. Four core-shell beads with a polymer coating and PCR mixture were synthesized using liquid marble formation and subsequent photo polymerization. Each bead can detect one target gene. We constructed a customised system for thermal cycling of these core-shell beads. Phylogrouping of the E. coli strains was carried out based on the fluorescent signal of the core-shell beads. This platform can be a promising alternative for multiplex nucleic acid analyses due to its simplicity and high throughput. The platform reported here also reduces the cycling time and avoids evaporation as well as contamination of the sample during the amplification process.

3.
Micromachines (Basel) ; 10(12)2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31888270

ABSTRACT

The polymerase chain reaction (PCR) is a robust technique used to make multiple copies of a segment of DNA. However, the available PCR platforms require elaborate and time-consuming operations or costly instruments, hindering their application. Herein, we introduce a sandwiched glass-polydimethylsiloxane (PDMS)-glass microchip containing an array of reactors for the real-time PCR-based detection of multiple waterborne bacteria. The PCR solution was loaded into the array of reactors in a single step utilising capillary filling, eliminating the need for pumps, valves, and liquid handling instruments. Issues of generating and trapping bubbles during the loading chip step were addressed by creating smooth internal reactor surfaces. Triton X-100 was used to enhance PCR compatibility in the chip by minimising the nonspecific adsorption of enzymes. A custom-made real-time PCR instrument was also fabricated to provide thermal cycling to the array chip. The microfluidic device was successfully demonstrated for microbial faecal source tracking (MST) in water.

SELECTION OF CITATIONS
SEARCH DETAIL
...