Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22274375

ABSTRACT

Novel variants continue to emerge in the SARS-CoV-2 pandemic. University testing programs may provide timely epidemiologic and genomic surveillance data to inform public health responses. We conducted testing from September 2021 to February 2022 in a university population under vaccination and indoor mask mandates. A total of 3,048 of 24,393 individuals tested positive for SARS-CoV-2 by RT-PCR; whole genome sequencing identified 209 Delta and 1,730 Omicron genomes of the 1,939 total sequenced. Compared to Delta, Omicron had a shorter median serial interval between genetically identical, symptomatic infections within households (2 versus 6 days, P=0.021). Omicron also demonstrated a greater peak reproductive number (2.4 versus 1.8) and a 1.07 (95% confidence interval: 0.58, 1.57; P<0.0001) higher mean cycle threshold value. Despite near universal vaccination and stringent mitigation measures, Omicron rapidly displaced the Delta variant to become the predominant viral strain and led to a surge in cases in a university population.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21253227

ABSTRACT

BackgroundTesting programs have been utilized as part of SARS-CoV-2 mitigation strategies on university campuses, and it is not known which strategies successfully identify cases and contain outbreaks. ObjectiveEvaluation of a testing program to control SARS-CoV-2 transmission at a large university. DesignProspective longitudinal study using remote contactless enrollment, daily mobile symptom and exposure tracking, and self-swab sample collection. Individuals were tested if the participant was (1) exposed to a known case, developed new symptoms, or reported high-risk behavior, (2) a member of a group experiencing an outbreak, or (3) at baseline upon enrollment. SettingAn urban, public university during Autumn quarter of 2020 ParticipantsStudents, staff, and faculty. MeasurementsSARS-CoV-2 PCR testing was conducted, and viral genome sequencing was performed. ResultsWe enrolled 16,476 individuals, performed 29,783 SARS-CoV-2 tests, and detected 236 infections. Greek community affiliation was the strongest risk factor for testing positive. 75.0% of positive cases reported at least one of the following: symptoms (60.8%), exposure (34.7%), or high-risk behaviors (21.5%). 88.1% of viral genomes (52/59) sequenced from Greek-affiliated students were genetically identical to at least one other genome detected, indicative of rapid SARS-CoV-2 spread within this group, compared to 37.9% (11/29) of genomes from non-Greek students and employees. LimitationsObservational study. ConclusionIn a setting of limited resources during a pandemic, we prioritized testing of individuals with symptoms and high-risk exposure during outbreaks. Rapid spread of SARS- CoV-2 occurred within outbreaks without evidence of further spread to the surrounding community. A testing program focused on high-risk populations may be effective as part of a comprehensive university-wide mitigation strategy to control the SARS-CoV-2 pandemic.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20223925

ABSTRACT

In October 2020, an outbreak of at least 50 COVID-19 cases was reported surrounding individuals employed at or visiting the White House. Here, we applied genomic epidemiology to investigate the origins of this outbreak. We enrolled two individuals with exposures linked to the White House COVID-19 outbreak into an IRB-approved research study and sequenced their SARS-CoV-2 infections. We find these viral sequences are identical to each other, but are distinct from over 190,000 publicly available SARS-CoV-2 genomes. These genomes fall as part of a lineage circulating in the USA since April or May 2020 and detected in Virginia and Michigan. Looking forwards, sequencing of additional community SARS-CoV-2 infections collected in the USA prior to October 2020 may shed further light on its geographic ancestry. In sequencing of SARS-CoV-2 infections collected after October 2020, it may be possible to identify infections that likely descend from the White House COVID-19 outbreak.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-056283

ABSTRACT

Structured AbstractO_ST_ABSBackgroundC_ST_ABSThe urgent need for massively scaled clinical testing for SARS-CoV-2, along with global shortages of critical reagents and supplies, has necessitated development of streamlined laboratory testing protocols. Conventional nucleic acid testing for SARS-CoV-2 involves collection of a clinical specimen with a nasopharyngeal swab in transport medium, nucleic acid extraction, and quantitative reverse transcription PCR (RT-qPCR) (1). As testing has scaled across the world, the global supply chain has buckled, rendering testing reagents and materials scarce (2). To address shortages, we developed SwabExpress, an end-to-end protocol developed to employ mass produced anterior nares swabs and bypass the requirement for transport media and nucleic acid extraction. MethodsWe evaluated anterior nares swabs, transported dry and eluted in low-TE buffer as a direct-to-RT-qPCR alternative to extraction-dependent viral transport media. We validated our protocol of using heat treatment for viral activation and added a proteinase K digestion step to reduce amplification interference. We tested this protocol across archived and prospectively collected swab specimens to fine-tune test performance. ResultsAfter optimization, SwabExpress has a low limit of detection at 2-4 molecules/uL, 100% sensitivity, and 99.4% specificity when compared side-by-side with a traditional RT-qPCR protocol employing extraction. On real-world specimens, SwabExpress outperforms an automated extraction system while simultaneously reducing cost and hands-on time. ConclusionSwabExpress is a simplified workflow that facilitates scaled testing for COVID-19 without sacrificing test performance. It may serve as a template for the simplification of PCR-based clinical laboratory tests, particularly in times of critical shortages during pandemics.

SELECTION OF CITATIONS
SEARCH DETAIL
...