Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 118(10): 3941-3952, 2021 10.
Article in English | MEDLINE | ID: mdl-34170524

ABSTRACT

Technological developments require the transfer to their location of application to make use of them. We describe the transfer of a real-time monitoring system for lab-scale preparative chromatography to two new sites where it will be used and developed further. Equivalent equipment was used. The capture of a biopharmaceutical model protein, human fibroblast growth factor 2 (FGF-2) was used to evaluate the system transfer. Predictive models for five quality attributes based on partial least squares regression were transferred. Six out of seven online sensors (UV/VIS, pH, conductivity, IR, RI, and MALS) showed comparable signals between the sites while one sensor (fluorescence) showed different signal profiles. A direct transfer of the models for real-time monitoring was not possible, mainly due to differences in sensor signals. Adaptation of the models was necessary. Then, among five prediction models, the prediction errors of the test run at the new sites were on average twice as high as at the training site (model-wise 0.9-5.7 times). Additionally, new prediction models for different products were trained at each new site. These allowed monitoring the critical quality attributes of two new biopharmaceutical products during their purification processes with mean relative deviations between 1% and 33%.


Subject(s)
Biological Products , Fibroblast Growth Factor 2 , Biological Products/chemistry , Biological Products/isolation & purification , Chromatography , Fibroblast Growth Factor 2/chemistry , Fibroblast Growth Factor 2/isolation & purification , Humans , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
2.
Protein Expr Purif ; 153: 70-82, 2019 01.
Article in English | MEDLINE | ID: mdl-30130579

ABSTRACT

A two-step purification process for human basic fibroblast growth factor (FGF-2) from clarified E. coli homogenate has been developed in which the impurity level after the second step is below the limit of quantification. Endotoxin content is cleared to 0.02 EU/µg FGF-2 and the overall yield is 67%. The performance of the cation exchanger Carboxymethyl-Sepharose Fast Flow (CM-SFF) was compared to the affinity resin Heparin-SFF regarding the impurity profile and product quality in the elution peak. The CM-SFF eluate was further purified using hydrophobic interaction resin Toyopearl-Hexyl-650C. The relative amounts of target product, host cell proteins (HCPs), dsDNA, endotoxin, monomer content, and high molecular weight impurities differed along the elution peak depending on the applied method. The bioactive monomer (>99%) was obtained with a yield of 48% for CM-SFF and 68% for Heparin-SFF. A half-load reduction in CM-SFF increased the yield up to 67% without deterioration of the impurity content. Assuming a dose of 400 µg FGF-2, endotoxin was reduced to 188 EU/dose, dsDNA <10 ng/dose, and HCP <2 ppm/dose using the cation exchanger. In the pooled eluate fractions, dsDNA was removed 4-fold (291 ng/mL) and endotoxin 14-fold (0.47 EU/µg FGF-2) more efficiently by CM-SFF than by affinity chromatography. In contrast, HCP clearance was 3-fold (13 ppm) more efficient with Heparin-SFF than CM-SFF. In contrast to process monitoring by UV280nm or SDS-PAGE, this characterization is the basis for a Process Analytical Technology attempt when correlated with online monitored signals, as it enables knowledge-based pooling according to defined quality criteria.


Subject(s)
Chromatography, Affinity/methods , Chromatography, Ion Exchange/methods , Endotoxins/isolation & purification , Fibroblast Growth Factor 2/isolation & purification , Animals , Cell Survival/drug effects , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/metabolism , Fibroblast Growth Factor 2/pharmacology , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Heparin/chemistry , Humans , Mice , NIH 3T3 Cells , Polymers/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Sepharose/chemistry
3.
J Org Chem ; 82(23): 12346-12358, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29028168

ABSTRACT

The pentasaccharide fragment α-d-Man-(1 → 5)-[α-d-Kdo-(2 → 4)-]α-d-Kdo-(2 → 6)-ß-d-GlcNAc-(1 → 6)-α-d-GlcNAc equipped with a 3-aminopropyl spacer moiety was prepared by a sequential assembly of monosaccharide building blocks. The glucosamine disaccharide-as a backbone surrogate of the bacterial lipid A region-was synthesized using an 1,3-oxazoline donor, which was followed by coupling with an isopropylidene-protected Kdo-fluoride donor to afford a protected tetrasaccharide intermediate. Eventually, an orthogonally protected manno-configured trichloroacetimidate donor was used to achieve the sterically demanding glycosylation of the 5-OH group of Kdo in good yield. The resulting pentasaccharide is suitably protected for further chain elongation at positions 3, 4, and 6 of the terminal mannose. Global deprotection afforded the target pentasaccharide to be used for the conversion into neoglycoconjugates and "clickable" ligands.


Subject(s)
Lipopolysaccharides/chemical synthesis , Oligosaccharides/chemistry , Rhizobium/chemistry , Disaccharides/chemical synthesis , Lipopolysaccharides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...