Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Nature ; 629(8014): 1126-1132, 2024 May.
Article in English | MEDLINE | ID: mdl-38750356

ABSTRACT

Plants exposed to incidences of excessive temperatures activate heat-stress responses to cope with the physiological challenge and stimulate long-term acclimation1,2. The mechanism that senses cellular temperature for inducing thermotolerance is still unclear3. Here we show that TWA1 is a temperature-sensing transcriptional co-regulator that is needed for basal and acquired thermotolerance in Arabidopsis thaliana. At elevated temperatures, TWA1 changes its conformation and allows physical interaction with JASMONATE-ASSOCIATED MYC-LIKE (JAM) transcription factors and TOPLESS (TPL) and TOPLESS-RELATED (TPR) proteins for repressor complex assembly. TWA1 is a predicted intrinsically disordered protein that has a key thermosensory role functioning through an amino-terminal highly variable region. At elevated temperatures, TWA1 accumulates in nuclear subdomains, and physical interactions with JAM2 and TPL appear to be restricted to these nuclear subdomains. The transcriptional upregulation of the heat shock transcription factor A2 (HSFA2) and heat shock proteins depended on TWA1, and TWA1 orthologues provided different temperature thresholds, consistent with the sensor function in early signalling of heat stress. The identification of the plant thermosensors offers a molecular tool for adjusting thermal acclimation responses of crops by breeding and biotechnology, and a sensitive temperature switch for thermogenetics.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Intrinsically Disordered Proteins , Temperature , Thermosensing , Thermotolerance , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Nucleus/metabolism , Gene Expression Regulation, Plant , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Nuclear Pore Complex Proteins/metabolism , Repressor Proteins/metabolism , Thermosensing/genetics , Thermosensing/physiology , Thermotolerance/genetics , Thermotolerance/physiology , Transcription Factors/metabolism , Signal Transduction
2.
Plant Cell ; 35(1): 67-108, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36018271

ABSTRACT

We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.


Subject(s)
Carbon Dioxide , Climate Change , Stress, Physiological , Carbon Dioxide/metabolism , Plant Transpiration/physiology , Plants/metabolism , Water/metabolism
3.
Front Plant Sci ; 13: 1071710, 2022.
Article in English | MEDLINE | ID: mdl-36743550

ABSTRACT

Climate change and overexploitation of groundwater resources cause constraints on water demand for agriculture, thus threatening crop productivity. For future food security, there is an urgent need for crops of high water use efficiency combined with high crop productivity, i.e. having high water productivity. High water productivity means efficient biomass accumulation at reduced transpiration. Recent studies show that plants are able to optimize carbon uptake per water transpired with little or no trade-off in yield. The phytohormone abscisic acid (ABA) plays a pivotal role in minimizing leaf transpiration and mediating enhanced water productivity. Hence, ABA and more chemically stable ABA agonists have the potential to improve crop water productivity. Synthesis, screening, and identification of suitable ABA agonists are major efforts currently undertaken. In this study, we used yeast expressing the plant ABA signal pathway to prescreen ABA-related cyano cyclopropyl compounds (CCPs). The yeast analysis allowed testing the ABA agonists for general toxicity, efficient uptake, and specificity in regulating different ABA receptor complexes. Subsequently, promising ABA-mimics were analyzed in vitro for ligand-receptor interaction complemented by physiological analyses. Several CCPs activated ABA signaling in yeast and plant cells. CCP1, CCP2, and CCP5 were by an order of magnitude more efficient than ABA in minimizing transpiration of Arabidopsis plants. In a progressive drought experiment, CCP2 mediated an increase in water use efficiency superior to ABA without trade-offs in biomass accumulation.

4.
Metabolites ; 12(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35050133

ABSTRACT

Small or specialized natural products (SNAPs) produced by plants vary greatly in structure and function, leading to selective advantages during evolution. With a limited number of genes available, a high promiscuity of the enzymes involved allows the generation of a broad range of SNAPs in complex metabolic networks. Comparative metabolic studies may help to understand why-or why not-certain SNAPs are produced in plants. Here, we used the wound-induced, vein patterning regulating VEP1 (AtStR1, At4g24220) and its paralogue gene on locus At5g58750 (AtStR2) from Arabidopsis to study this issue. The enzymes encoded by VEP1-like genes were clustered under the term PRISEs (progesterone 5ß-reductase/iridoid synthase-like enzymes) as it was previously demonstrated that they are involved in cardenolide and/or iridoid biosynthesis in other plants. In order to further understand the general role of PRISEs and to detect additional more "accidental" roles we herein characterized A. thaliana steroid reductase 1 (AtStR1) and compared it to A. thaliana steroid reductase 2 (AtStR2). We used A. thaliana Col-0 wildtype plants as well as VEP1 knockout mutants and VEP1 knockout mutants overexpressing either AtStR1 or AtStR2 to investigate the effects on vein patterning and on the stress response after treatment with methyl vinyl ketone (MVK). Our results added evidence to the assumption that AtStR1 and AtStR2, as well as PRISEs in general, play specific roles in stress and defense situations and may be responsible for sudden metabolic shifts.

5.
Trends Plant Sci ; 24(7): 625-635, 2019 07.
Article in English | MEDLINE | ID: mdl-31153771

ABSTRACT

The physiological roles of abscisic acid (ABA) as a stress hormone in plant responses to water shortage, including stomatal regulation and gene expression, have been well documented. However, less attention has been paid to the function of basal ABA synthesized under well-watered conditions in recent studies. In this review, we summarize progress in the understanding of how low concentrations of ABA are perceived at the molecular level and how its signaling affects plant metabolism and growth under nonstressed conditions. We also discuss the dual nature of ABA in acting as an inhibitor and activator of plant growth and development.


Subject(s)
Abscisic Acid , Plant Growth Regulators , Gene Expression Regulation, Plant , Plant Stomata , Plants , Stress, Physiological , Water
6.
Plant Physiol ; 180(2): 1066-1080, 2019 06.
Article in English | MEDLINE | ID: mdl-30886115

ABSTRACT

Improving the water use efficiency (WUE) of crop plants without trade-offs in growth and yield is considered a utopic goal. However, recent studies on model plants show that partial restriction of transpiration can occur without a reduction in CO2 uptake and photosynthesis. In this study, we analyzed the potentials and constraints of improving WUE in Arabidopsis (Arabidopsis thaliana) and in wheat (Triticum aestivum). We show that the analyzed Arabidopsis wild-type plants consume more water than is required for unrestricted growth. WUE was enhanced without a growth penalty by modulating abscisic acid (ABA) responses either by using overexpression of specific ABA receptors or deficiency of ABA coreceptors. Hence, the plants showed higher water productivity compared with the wild-type plants; that is, equal growth with less water. The high WUE trait was resilient to changes in light intensity and water availability, but it was sensitive to the ambient temperature. ABA application to plants generated a partial phenocopy of the water-productivity trait. ABA application, however, was never as effective as genetic modification in enhancing water productivity, probably because ABA indiscriminately targets all ABA receptors. ABA agonists selective for individual ABA receptors might offer an approach to phenocopy the water-productivity trait of the high WUE lines. ABA application to wheat grown under near-field conditions improved WUE without detectable growth trade-offs. Wheat yields are heavily impacted by water deficit, and our identification of this crop as a promising target for WUE improvement may help contribute to greater food security.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis/physiology , Plant Proteins/metabolism , Receptors, Cell Surface/metabolism , Triticum/physiology , Water/metabolism , Abscisic Acid/pharmacology , Arabidopsis/genetics , Arabidopsis/growth & development , Ecotype , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Transpiration/drug effects , Plants, Genetically Modified , Temperature , Triticum/drug effects
7.
Ann Bot ; 124(4): 581-590, 2019 10 29.
Article in English | MEDLINE | ID: mdl-30629104

ABSTRACT

BACKGROUND AND AIMS: Water deficit is the single most important factor limiting plant productivity in the field. Poplar is a crop used for second-generation bioenergy production that can be cultivated on marginal land without competing for land use in food production. Poplar has a high demand for water, which makes improving its water use efficiency (WUE) an attractive goal. Recently, we showed that enhanced expression of specific receptors of arabidopsis for the phytohormone abscisic acid (ABA) can improve WUE in arabidopsis and water productivity, i.e. more biomass is formed per unit of water over time. In this study, we examined whether ABA receptors from poplar can enhance WUE and water productivity in arabidopsis. METHODS: ABA receptors from poplar were stably introduced into arabidopsis for analysis of their effect on water use efficiency. Physiological analysis included growth assessment and gas exchange measurements. KEY RESULTS: The data presented here are in agreement with the functionality of poplar ABA receptors in arabidopsis, which led to ABA-hypersensitive seed germination and root growth. In addition, arabidopsis lines expressing poplar RCAR10, but not RCAR9, showed increased WUE by up to 26 % compared with the wild type with few trade-offs in growth that also resulted in higher water productivity during drought. The improved WUE was mediated by reduced stomatal conductance, a steeper CO2 gradient at the leaf boundary and sustained photosynthesis resulting in an increased intrinsic WUE (iWUE). CONCLUSIONS: The analysis is a case study supporting the use of poplar ABA receptors for improving WUE and showing the feasibility of using a heterologous expression strategy for generating plants with improved water productivity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Populus , Abscisic Acid , Droughts , Water
9.
Proc Natl Acad Sci U S A ; 114(38): 10280-10285, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28874521

ABSTRACT

The phytohormone abscisic acid (ABA) is induced in response to abiotic stress to mediate plant acclimation to environmental challenge. Key players of the ABA-signaling pathway are the ABA-binding receptors (RCAR/PYR1/PYL), which, together with a plant-specific subclade of protein phosphatase 2C (PP2C), form functional holoreceptors. The Arabidopsis genome encodes nine PP2C coreceptors and 14 different RCARs, which can be divided into three subfamilies. The presence of these gene families in higher plants points to the existence of an intriguing regulatory network and poses questions as to the functional compatibility and specificity of receptor-coreceptor interactions. Here, we analyzed all RCAR-PP2C combinations for their capacity to regulate ABA signaling by transient expression in Arabidopsis protoplasts. Of 126 possible RCAR-PP2C pairings, 113 were found to be functional. The three subfamilies within the RCAR family showed different sensitivities to regulating the ABA response at basal ABA levels when efficiently expressed. At exogenous high ABA levels, the RCARs regulated most PP2Cs and activated the ABA response to a similar extent. The PP2C AHG1 was regulated only by RCAR1/PYL9, RCAR2/PYL7, and RCAR3/PYL8, which are characterized by a unique tyrosine residue. Site-directed mutagenesis of RCAR1 showed that its tyrosine residue is critical for AHG1 interaction and regulation. Furthermore, the PP2Cs HAI1 to HAI3 were regulated by all RCARs, and the ABA receptor RCAR4/PYL10 showed ABA-dependent PP2C regulation. The findings unravel the interaction network of possible RCAR-PP2C pairings and their different potentials to serve a rheostat function for integrating fluctuating hormone levels into the ABA-response pathway.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Gene Regulatory Networks , Genome, Plant , Phosphoprotein Phosphatases/metabolism , Protein Phosphatase 2C/metabolism
10.
Plant J ; 92(2): 199-210, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28746755

ABSTRACT

The plant hormone abscisic acid (ABA) is a key player in responses to abiotic stress. ABA regulates a plant's water status and mediates drought tolerance by controlling stomatal gas exchange, water conductance and differential gene expression. ABA is recognized and bound by the Regulatory Component of ABA Receptors (RCARs)/PYR1/PYL (Pyrabactin Resistance 1/PYR1-like). Ligand binding stabilizes the interaction of RCARs with type 2C protein phosphatases (PP2C), which are ABA co-receptors. While the core pathway of ABA signalling has been elucidated, the large number of different ABA receptors and co-receptors within a plant species generates a complexity of heteromeric receptor complexes that has not functionally been resolved in any plant species to date. In this study, we characterized ABA receptors and co-receptors of grey poplar (Populus x canescens [Ait.] Sm.) and their capacity to regulate ABA responses. We observed a high number of regulatory combinations of holo-receptor complexes, but also some preferential and selective RCAR-PP2C interactions. Poplar and Arabidopsis ABA receptor components revealed a strong structural and functional conservation. Heterologous receptor complexes of poplar and Arabidopsis components showed functionality in vitro and regulated ABA-responsive gene expression in cells of both species. ABA-responsive promoters of Arabidopsis were also active in poplar, which was explored to generate poplar reporter lines expressing green fluorescent protein in response to ABA. The study presents a detailed analysis of receptor complexes of a tree species and shows high conservation of ABA receptor components between an annual and a perennial plant.


Subject(s)
Abscisic Acid/metabolism , Plant Growth Regulators/metabolism , Populus/metabolism , Receptors, Cell Surface/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/physiology , Genes, Plant/genetics , Genome, Plant/genetics , Plant Proteins/metabolism , Plant Proteins/physiology , Populus/physiology , Receptors, Cell Surface/genetics
11.
Clin Case Rep ; 5(5): 613-615, 2017 05.
Article in English | MEDLINE | ID: mdl-28469861

ABSTRACT

Dravet syndrome is often caused by SCN1A mutations and has a wide variation in clinical appearance. Indication for genetic analysis should be an epileptic encephalopathy or severe clinical course of seizures in infants with episodes of fever before the first year of life.

12.
Proc Natl Acad Sci U S A ; 113(24): 6791-6, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27247417

ABSTRACT

Plant growth requires the influx of atmospheric CO2 through stomatal pores, and this carbon uptake for photosynthesis is inherently associated with a large efflux of water vapor. Under water deficit, plants reduce transpiration and are able to improve carbon for water exchange leading to higher water use efficiency (WUE). Whether increased WUE can be achieved without trade-offs in plant growth is debated. The signals mediating the WUE response under water deficit are not fully elucidated but involve the phytohormone abscisic acid (ABA). ABA is perceived by a family of related receptors known to mediate acclimation responses and to reduce transpiration. We now show that enhanced stimulation of ABA signaling via distinct ABA receptors can result in plants constitutively growing at high WUE in the model species Arabidopsis WUE was assessed by three independent approaches involving gravimetric analyses, (13)C discrimination studies of shoots and derived cellulose fractions, and by gas exchange measurements of whole plants and individual leaves. Plants expressing the ABA receptors RCAR6/PYL12 combined up to 40% increased WUE with high growth rates, i.e., are water productive. Water productivity was associated with maintenance of net carbon assimilation by compensatory increases of leaf CO2 gradients, thereby sustaining biomass acquisition. Leaf surface temperatures and growth potentials of plants growing under well-watered conditions were found to be reliable indicators for water productivity. The study shows that ABA receptors can be explored to generate more plant biomass per water transpired, which is a prime goal for a more sustainable water use in agriculture.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Plant Leaves/metabolism , Signal Transduction/physiology , Water/metabolism , Abscisic Acid/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Carbon Dioxide/metabolism , Plant Leaves/genetics
13.
Phytochemistry ; 113: 96-107, 2015 May.
Article in English | MEDLINE | ID: mdl-24726371

ABSTRACT

Abscisic acid (ABA) is a phytohormone known to mediate numerous plant developmental processes and responses to environmental stress. In Arabidopsis thaliana, ABA acts, through a genetically redundant family of ABA receptors entitled Regulatory Component of ABA Receptor (RCAR)/Pyrabactin Resistant 1 (PYR1)/Pyrabactin Resistant-Like (PYL) receptors comprised of thirteen homologues acting in concert with a seven-member set of phosphatases. The individual contributions of A. thaliana RCARs and their binding partners with respect to specific physiological functions are as yet poorly understood. Towards developing efficacious plant growth regulators selective for specific ABA functions and tools for elucidating ABA perception, a panel of ABA analogs altered specifically on positions around the ABA ring was assembled. These analogs have been used to probe thirteen RCARs and four type 2C protein phosphatases (PP2Cs) and were also screened against representative physiological assays in the model plant Arabidopsis. The 1'-O methyl ether of (S)-ABA was identified as selective in that, at physiologically relevant levels, it regulates stomatal aperture and improves drought tolerance, but does not inhibit germination or root growth. Analogs with the 7'- and 8'-methyl groups of the ABA ring replaced with bulkier groups generally retained the activity and stereoselectivity of (S)- and (R)-ABA, while alteration of the 9'-methyl group afforded an analog that substituted for ABA in inhibiting germination but neither root growth nor stomatal closure. Further in vitro testing indicated differences in binding of analogs to individual RCARs, as well as differences in the enzyme activity resulting from specific PP2Cs bound to RCAR-analog complexes. Ultimately, these findings highlight the potential of a broader chemical genetics approach for dissection of the complex network mediating ABA-perception, signaling and functionality within a given species and modifications in the future design of ABA agonists.


Subject(s)
Abscisic Acid , Arabidopsis , Phosphoprotein Phosphatases/metabolism , Plant Growth Regulators/metabolism , Abscisic Acid/agonists , Abscisic Acid/analogs & derivatives , Abscisic Acid/chemistry , Abscisic Acid/metabolism , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Molecular Structure , Signal Transduction , Structure-Activity Relationship
14.
Front Plant Sci ; 5: 126, 2014.
Article in English | MEDLINE | ID: mdl-24782872

ABSTRACT

Phosphoenolpyruvate (PEP) serves not only as a high energy carbon compound in glycolysis, but it acts also as precursor for plastidial anabolic sequences like the shikimate pathway, which produces aromatic amino acids (AAA) and subsequently secondary plant products. After conversion to pyruvate, PEP can also enter de novo fatty acid biosynthesis, the synthesis of branched-chain amino acids, and the non-mevalonate way of isoprenoid production. As PEP cannot be generated by glycolysis in chloroplasts and a variety of non-green plastids, it has to be imported from the cytosol by a phosphate translocator (PT) specific for PEP (PPT). A loss of function of PPT1 in Arabidopsis thaliana results in the chlorophyll a/b binding protein underexpressed1 (cue1) mutant, which is characterized by reticulate leaves and stunted roots. Here we dissect the shoot- and root phenotypes, and also address the question whether or not long distance signaling by metabolites is involved in the perturbed mesophyll development of cue1. Reverse grafting experiments showed that the shoot- and root phenotypes develop independently from each other, ruling out long distance metabolite signaling. The leaf phenotype could be transiently modified even in mature leaves, e.g. by an inducible PPT1RNAi approach or by feeding AAA, the cytokinin trans-zeatin (tZ), or the putative signaling molecule dehydrodiconiferyl alcohol glucoside (DCG). Hormones, such as auxins, abscisic acid, gibberellic acid, ethylene, methyl jasmonate, and salicylic acid did not rescue the cue1 leaf phenotype. The low cell density1 (lcd1) mutant shares the reticulate leaf-, but not the stunted root phenotype with cue1. It could neither be rescued by AAA nor by tZ. In contrast, tZ and AAA further inhibited root growth both in cue1 and wild-type plants. Based on our results, we propose a model that PPT1 acts as a net importer of PEP into chloroplast, but as an overflow valve and hence exporter in root plastids.

15.
Proc Natl Acad Sci U S A ; 111(15): 5741-6, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24706923

ABSTRACT

The plant hormone abscisic acid (ABA) acts both as a developmental signal and as an integrator of environmental cues such as drought and cold. ABA perception recruits an ABA-binding regulatory component [regulatory component of ABA receptor (RCAR)/PYR1/PYL] and an associated protein phosphatase 2C (PP2C). Phytohormone binding inactivates the phosphatase activity of the coreceptor, permitting phosphorelay of the ABA signal via downstream protein kinases. RCARs and PP2C coreceptors are represented by small protein families comprising 14 and 9 members in Arabidopsis, respectively. The specificity of the RCAR-PP2C interaction and the constraints contributing to specific combinations are poorly understood. In this contribution, we analyzed RCAR7/PYL13, which is characterized by three variant amino acid residues in the conserved ABA-binding pocket. RCAR7 regulated the phosphatase activity of the PP2Cs ABI1, ABI2, and PP2CA in vitro at nanomolar ABA levels; however, it was unable to regulate the structurally related hypersensitive to ABA 1 (HAB1). Site-directed mutagenesis of HAB1 established ABA-dependent regulation by RCAR7. Conversion of the noncanonical amino acid residues of RCAR7 into the consensus ABA-binding pocket did not perceptibly change receptor function. Ectopic expression of RCAR7 in Arabidopsis resulted in ABA hypersensitivity affecting gene regulation, seed germination, and stomatal closure. The RCAR7 loss-of-function mutant revealed no changes in ABA responses, similar to the RCAR9 knockout line, whereas the combined deficiency of RCAR7 and RCAR9 resulted in ABA-insensitive seed germination. The study shows a role of RCAR7 in early plant development, proves its ABA receptor function, and identifies structural constraints of RCAR7-PP2C interaction.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant/physiology , Phosphoprotein Phosphatases/metabolism , Plant Growth Regulators/metabolism , Arabidopsis Proteins/genetics , DNA Primers/genetics , Escherichia coli , Mutagenesis, Site-Directed , Phosphoprotein Phosphatases/genetics , Protoplasts/metabolism , Reverse Transcriptase Polymerase Chain Reaction
16.
Am J Med Genet A ; 164A(3): 620-6, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24357125

ABSTRACT

Interstitial deletions of chromosome band 14q24.1q24.3 are apparently very rare. We report on three unrelated patients with overlapping de novo deletions of sizes 5.4, 2.8, and 2.3 Mb in this region. While some clinical problems such as intestinal malrotation, cryptorchidism, and ectopic kidney were only observed in single patients, all three patients had mild intellectual disability, congenital heart defects (truncus arteriosus, pulmonary atresia, atrial septal defect, and/or ventricular septal defect), brachydactyly, hypertelorism, broad nasal bridge, and thin upper lips. Likely haploinsufficiency of one or several of the 19 genes in the common deleted interval (ACTN1, DCAF5, EXD2, GALNTL1, ERH, SLC39A9, PLEKHD1, CCDC177, KIAA0247, LOC100289511, SRSF5, SLC10A1, SMOC1, SLC8A3, ADAM21P1, COX16, SYNJ2BP, SYNJ2BP-COX16, ADAM21) was responsible for these manifestations, but apart from SMOC1, mutations in which cause autosomal recessive Waardenburg anophthalmia syndrome, and ACTN1, mutations in which are associated with congenital macrothrombocytopenia, no disease associations have so far been reported for the other genes. Functional studies and a systematic search for mutations or chromosome aberrations in this region will elucidate the role of individual genes in the clinical manifestations and will provide insight into the underlying biological mechanisms.


Subject(s)
Brachydactyly/genetics , Chromosome Deletion , Chromosomes, Human, Pair 14 , Chromosomes, Human, Pair 1 , Heart Defects, Congenital/genetics , Intellectual Disability/genetics , Brachydactyly/diagnosis , Child , Child, Preschool , Comparative Genomic Hybridization , Facies , Female , Heart Defects, Congenital/diagnosis , Humans , Infant , Intellectual Disability/diagnosis , Male , Phenotype
18.
Curr Opin Plant Biol ; 16(3): 293-300, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23545219

ABSTRACT

Higher plants are sessile organisms that continuously adapt their metabolism and development in response to a changing environment. Control of water uptake and the maintenance of water status are key for the survival and optimal growth of plants. Environmental factors such as radiation, air temperature, rainfall, and humidity have a high impact on plant water relations. Hence, plants require a coordinated and timely response in above-ground and below-ground organs to cope with the changing need to take up and preserve water. In this review we will focus on changes in plant water availability and on how information on the water status is communicated to remote plant organs. We will summarize the current knowledge of long-distance signaling by hydraulic cues and of potential sensors required to convert a physical signal into a chemical messenger, namely the plant hormone abscisic acid (ABA).


Subject(s)
Plants/metabolism , Signal Transduction , Water/metabolism , Abscisic Acid/metabolism , Homeostasis
19.
Plant Physiol ; 157(4): 2108-19, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21976481

ABSTRACT

The phytohormone abscisic acid (ABA) regulates stress responses and controls numerous aspects of plant growth and development. Biosynthetic precursors and catabolites of ABA have been shown to trigger ABA responses in physiological assays, but it is not clear whether these are intrinsically active or whether they are converted into ABA in planta. In this study, we analyzed the effect of ABA precursors, conjugates, and catabolites on hormone signaling in Arabidopsis (Arabidopsis thaliana). The compounds were also tested in vitro for their ability to regulate the phosphatase moiety of ABA receptor complexes consisting of the protein phosphatase 2C ABI2 and the coreceptors RCAR1/PYL9, RCAR3/PYL8, and RCAR11/PYR1. Using mutants defective in ABA biosynthesis, we show that the physiological activity associated with ABA precursors derives predominantly from their bioconversion to ABA. The ABA glucose ester conjugate, which is the most widespread storage form of ABA, showed weak ABA-like activity in germination assays and in triggering ABA signaling in protoplasts. The ABA conjugate and precursors showed negligible activity as a regulatory ligand of the ABI2/RCAR receptor complexes. The majority of ABA catabolites were inactive in our assays. To analyze the chemically unstable 8'- and 9'-hydroxylated ABA catabolites, we used stable tetralone derivatives of these compounds, which did trigger selective ABA responses. ABA synthetic analogs exhibited differential activity as regulatory ligands of different ABA receptor complexes in vitro. The data show that ABA precursors, catabolites, and conjugates have limited intrinsic bioactivity and that both natural and synthetic ABA-related compounds can be used to probe the structural requirements of ABA ligand-receptor interactions.


Subject(s)
Abscisic Acid/pharmacology , Arabidopsis Proteins/metabolism , Arabidopsis/drug effects , Arabidopsis/physiology , Plant Growth Regulators/pharmacology , Abscisic Acid/chemistry , Abscisic Acid/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Genes, Reporter , Germination/drug effects , Germination/genetics , Germination/physiology , Intracellular Signaling Peptides and Proteins , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mutation , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Plant Growth Regulators/chemistry , Plant Growth Regulators/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/physiology , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/physiology , Plant Stomata/drug effects , Plant Stomata/genetics , Plant Stomata/physiology , Plants, Genetically Modified , Protoplasts , Recombinant Fusion Proteins , Seedlings/drug effects , Seedlings/genetics , Seedlings/physiology , Seeds/drug effects , Seeds/genetics , Seeds/physiology , Signal Transduction/drug effects , Tetralones/chemistry , Tetralones/metabolism , Tetralones/pharmacology
20.
Biomed Microdevices ; 13(3): 533-8, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21374067

ABSTRACT

During the last decade microarrays have become a powerful analytical tool. Commonly microarrays are produced in a non-contact manner using silicone printheads. However, silicone printheads are expensive and not able to be used as a disposable. Here, we show the development and functional characterization of 8-channel plastic microarray printheads that overcome both disadvantages of their conventional silicone counterparts. A combination of injection-molding and laser processing allows us to produce a high quantity of cheap, customizable and disposable microarray printheads. The use of plastics (e.g., polystyrene) minimizes the need for surface modifications required previously for proper printing results. Time-consuming regeneration processes, cleaning procedures and contaminations caused by residual samples are avoided. The utilization of plastic printheads for viscous liquids, such as cell suspensions or whole blood, is possible. Furthermore, functional parts within the plastic printhead (e.g., particle filters) can be included. Our printhead is compatible with commercially available TopSpot devices but provides additional economic and technical benefits as compared to conventional TopSpot printheads, while fulfilling all requirements demanded on the latter. All in all, this work describes how the field of traditional microarray spotting can be extended significantly by low cost plastic printheads.


Subject(s)
Disposable Equipment , Microarray Analysis/instrumentation , Plastics , Printing/instrumentation , Cell Survival , Equipment Design , Filtration , HeLa Cells , Humans , Injections , Lasers , Tissue Array Analysis , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...