Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Sep Sci ; 31(1): 119-27, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18081209

ABSTRACT

A sensitive multi-residue analytical method was developed for the determination of ten quinolones: enoxacin, ofloxacin, norfloxacin, ciprofloxacin, danofloxacin, enrofloxacin, sarafloxacin, oxolinic acid, nalidixic acid, and flumequine in bovine liver and porcine kidney. A simple liquid extraction step followed by a solid phase extraction clean up procedure was applied for the extraction of quinolones from liver and kidney tissues. Recoveries of the extraction varied between 82 and 88% for bovine liver and 92 and 95% for porcine kidney. Separation was performed on an ODS-3 PerfectSil Target (250 x 4 mm) 5 microm analytical column at 25 degrees C. The mobile phase consisted of a mixture of TFA 0.1%-CH(3)CN-CH(3)OH, delivered at a flow rate of 1.2 mL/min according to a gradient program. Elution of quinolones and the internal standard (caffeine, 7.5 ng/microL) was complete within 27 min. Photodiode array detection was used for monitoring the eluants at 275 and 255 nm. The method was fully validated according to the European Union Decision 2002/657/EC, determining linearity, selectivity, decision limit, detection capability, accuracy, and precision. The LODs of the specific method of quinolone determination in bovine liver varied between 3 and 7 microg/kg and in porcine kidney between 3 and 4 microg/kg.


Subject(s)
Chromatography, High Pressure Liquid/methods , European Union , Kidney/chemistry , Liver/chemistry , Quinolones/analysis , Quinolones/chemistry , Swine , Animals , Calibration , Cattle , Sensitivity and Specificity , Time Factors
2.
Article in English | MEDLINE | ID: mdl-17977806

ABSTRACT

Herein two different methods are proposed for the determination of 10 quinolones (enoxacin, ofloxacin, norfloxacin, ciprofloxacin, danofloxacin, enrofloxacin, sarafloxacin, oxolinic acid, nalidixic acid and flumequine) in chicken muscle and egg yolk. Two different HPLC systems were used comparatively and the respective methods were fully validated. The analytes were initially extracted from chicken muscle and egg yolk and purified by a solid phase extraction using LiChrolut RP-18 cartridges. Recoveries varied between 96.6 and 102.8% for chicken muscle and 96.4-102.8% for egg yolk. HPLC separation was performed at 25 degrees C using an ODS-3 PerfectSilTarget (250 mmx4 mm) 5 microm analytical column (MZ-Analysentechnik, Germany). The mobile phase consisted of a mixture of 0.1% trifluoroacetic acid (TFA)-ACN-CH3OH, delivered by a gradient program, different for each method. In both cases caffeine was used as internal standard at the concentration of 7.5 ng/microL. Column effluent was monitored using a photodiode array detector, set at 275 and 255 nm. The developed methods were validated according to the criteria of Commission Decision 2002/657/EC. The LODs for chicken muscle varied between 5.0 and 12.0 microg/kg and for egg yolk was 8.0 microg/kg for all examined analytes.


Subject(s)
Anti-Bacterial Agents/analysis , Chromatography, High Pressure Liquid/methods , Egg Yolk/chemistry , Muscle, Skeletal/chemistry , Quinolones/analysis , Animals , Chickens , Maximum Allowable Concentration , Reproducibility of Results , Sensitivity and Specificity , Ultraviolet Rays , Veterinary Drugs/analysis
3.
J Sep Sci ; 30(16): 2676-86, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17763524

ABSTRACT

The aim of this work was to develop an HPLC method for the simultaneous determination of ten quinolones: enoxacin, ofloxacin, norfloxacin, ciprofloxacin, danofloxacin, enrofloxacin, sarafloxacin, oxolinic acid, nalidixic acid, and flumequine, in various tissues of food-producing animals. Separation was achieved on a PerfectSil Target column (250 mm x 4 mm, ODS-3, 5 microm), by MZ-Analysentechnik (Germany), at room temperature. The mobile phase consisted of 0.1% TFA-CH(3)OH-CH(3)CN and was delivered by a gradient program of 35 min. The detection and quantitation was performed on a photodiode array detector at 275 and 255 nm. Caffeine (7.5 ng/microL) was used as the internal standard (IS). Analytes were isolated from tissue samples by 0.1% methanolic TFA solution. SPE, using LiChrolut RP-18 cartridges, was applied for further purification. The extraction protocol was optimized and the final recoveries varied between 92.0 and 107.4%. The method was fully validated according to Commission Decision 2002/657/EC. Limits of quantitation for the examined quinolones extracted from each tissue were much lower than the respective Maximum Residue Levels, ranging between 30 and 50 microg/kg for bovine tissue, between 30 and 55 microg/kg for ovine tissue, and between 40 and 50 microg/kg for porcine tissue.


Subject(s)
Chromatography, High Pressure Liquid/methods , Drug Residues/analysis , Quinolones/analysis , Animals , European Union , Reference Standards
4.
J Sep Sci ; 30(15): 2421-9, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17683042

ABSTRACT

A rapid and sensitive analytical method was developed for the residue analysis of ten quinolones (enoxacin (ENO), ofloxacin (OFL), norfloxacin (NOR), ciprofloxacin (CIP), danofloxacin (DAN), enrofloxacin (ENR), sarafloxacin (SAR), oxolinic acid (OXO), nalidixic acid (NAL), and flumequine (FLU)) in cow's milk. The analytes were extracted from milk by a deproteinization step followed by a simple SPE cleanup procedure using LiChrolut RP-18 Merck cartridges. Recoveries varied between 75 and 92%. HPLC separation was performed at 25 degrees C using an ODS-3 PerfectSil Target (250 x 4 mm(2)) 5 microm analytical column (MZ-Analysentechnik, Germany). The mobile phase consisted of a mixture of TFA 0.1%-CH(3)CN-CH(3)OH, delivered by a gradient program at the flow rate of 1.2 mL/min. Elution of the ten analytes and the internal standard (caffeine, 7.5 ng/microL) was completed within 27 min. Column effluent was monitored using a photodiode array detector, set at 275 and 255 nm. The developed method was validated according to the criteria of Commission Decision 2002/657/EC. The LODs of the specific method of quinolones' determination in milk varied between 1.5 and 6.8 ng/microL.


Subject(s)
Chemistry Techniques, Analytical/methods , Chromatography, High Pressure Liquid/methods , Quinolones/analysis , Solid Phase Extraction/methods , Adsorption , Animals , Chromatography/methods , European Union , Hydrogen-Ion Concentration , Ions , Materials Testing , Metals/chemistry , Models, Chemical , Potentiometry/methods , X-Ray Diffraction
5.
J Sep Sci ; 28(6): 555-65, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15881086

ABSTRACT

In the present work, a rapid, accurate, and sensitive method has been developed for the quantitative determination of five fluoroquinolones (enoxacin, ofloxacin, norfloxacin, ciprofloxacin, and enrofloxacin) in edible animal tissues (muscle tissue, liver, kidney, and eggs). The separation was accomplished on an Inertsil (250 x 4 mm) C8, 5 microm, analytical column, at ambient temperature within 15 min. The mobile phase consisted of a mixture of citric acid (0.4 mol L(-1))-CH3OH-CH3CN (87:9:4% v/v). UV detection at 275 nm yielded the following limits of detection: 100 pg per 20 microL injected volume for enoxacin, norfloxacin, and ciprofloxacin, 20 pg for ofloxacin, and 200 pg for enrofloxacin. Peaks in real samples were identified by means of a photodiode array detector. The method was validated in terms of intra-day (n = 8) and inter-day (n = 8) precision and accuracy. Tissue samples were purified from endogenous interference by solid-phase extraction using Oasis HLB cartridges. The solid-phase extraction protocol was optimized in terms of retention and elution. Recovery rates at fortification levels of 40, 60, and 80 ng/g ranged from 82.5% to 111.1%. The applicability of the method was examined using real samples from a chicken treated orally with the five studied fluoroquinolones.


Subject(s)
Anti-Infective Agents/analysis , Chromatography, High Pressure Liquid/methods , Drug Residues/analysis , Fluoroquinolones/analysis , Meat/analysis , Animals , Anti-Infective Agents/administration & dosage , Cattle , Chickens , Chromatography, High Pressure Liquid/instrumentation , Fluoroquinolones/administration & dosage , Molecular Structure , Reproducibility of Results , Sensitivity and Specificity , Swine
6.
J Sep Sci ; 28(4): 325-31, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15792246

ABSTRACT

A direct, accurate, and sensitive chromatographic analytical method for the quantitative determination of five fluoroquinolones (enoxacin, ofloxacin, norfloxacin, ciprofloxacin, and enrofloxacin) in chicken whole blood is proposed in the present study. For quantitative determination lamotrigine was used as internal standard at a concentration of 20 ng/microL. The developed method was successfully applied to the determination of enrofloxacin, as the main component of commercially available veterinary drugs. Fluoroquinolone antibiotics were separated on an Inertsil (250 x 4 mm) C8, 5 microm, analytical column, at ambient temperature. The mobile phase consisted of a mixture of citric acid (0.4 mol L(-1))-CH3OH-CH3CN (87:9:4% v/v) leading to retention times less than 14 min, at a flow rate 1.4 mL min(-1). UV detection at 275 nm provided limits of detection of 2 ng/mL per 20 microL injected volume for enoxacin, norfloxacin, and ciprofloxacin, 0.4 ng/mL for ofloxacin, and 4 ng/mL for enrofloxacin. Preparation of chicken blood samples is based on the deproteinization with acetonitrile while the pharmaceutical drug was simply diluted with water. Peaks of examined analytes in real samples were identified by means of a photodiode array detector. The method was validated in terms of within-day (n=6) precision and accuracy after chicken whole blood sample deproteinization by CH3CN. Using 50 microL of chicken blood sample, recovery rates at fortification levels of 40, 60, and 80 ng ranged from 86.7% to 103.7%. The applicability of the method was evaluated using real samples from chicken under fluoroquinolone treatment.


Subject(s)
Chickens/blood , Fluoroquinolones/chemistry , Fluoroquinolones/pharmacokinetics , Veterinary Drugs/pharmacokinetics , Animals , Chromatography, High Pressure Liquid , Molecular Structure , Veterinary Drugs/chemistry
7.
J Sep Sci ; 28(18): 2444-53, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16405173

ABSTRACT

A novel sorbent material of ultrapure silica gel provided with novel State of the Art Bonding- and Endcapping Technology commercially available under the name PerfectSil Target (250 x 4 mm, ODS-3, 5 microm, by MZ-Analysentechnik, Germany) was used and validated for the sensitive HPLC determination of ten quinolone antibiotics: enoxacin, ofloxacin, norfloxacin, ciprofloxacin, danofloxacin (DAN), enrofloxacin (ENR), sarafloxacin, oxolinic acid (OXO), nalidixic acid (NAL), and flumequine. The analytical column validation was performed in terms of separation efficiency, precision, and peak asymmetry. The separation was achieved at ambient temperature using a mobile phase of TFA (0.1%)-CH3OH-CH3CN delivered under the optimum gradient program, at a flow rate of 1.2 mU/min. Photodiode array detection was used and eluant was monitored at 275 nm. For the quantitative determination caffeine (7.5 ng/microL) was used as internal standard. The achieved LODs were 0.03 ng/microL per 50 microL injected volume for OXO, 0.1 ng/microL for DAN, ENR, and NAL, and 0.2 ng/microL for the remaining six studied quinolones. The method was validated in terms of interday (n = 6) and intraday (n = 5) precision and accuracy. The proposed method was successfully applied to the analysis of pharmaceutical formulations destined either for human or for veterinary use.


Subject(s)
Chemistry, Pharmaceutical/methods , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Quinolones/isolation & purification , Absorption , Animals , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/isolation & purification , Humans , Models, Chemical , Reproducibility of Results , Solutions , Tablets , Time Factors , Veterinary Drugs/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...