Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 11(9): 1474-85, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26027932

ABSTRACT

The killing of antigen-bearing cells by clonal populations of cytotoxic T lymphocytes (CTLs) is thought to be a rapid phenomenon executed uniformly by individual CTLs. We combined bulk and single-CTL killing assays over a prolonged time period to provide the killing statistics of clonal human CTLs against an excess of target cells. Our data reveal efficiency in sustained killing at the population level, which relied on a highly heterogeneous multiple killing performance at the individual level. Although intraclonal functional heterogeneity was a stable trait in clonal populations, it was reset in the progeny of individual CTLs. In-depth mathematical analysis of individual CTL killing data revealed a substantial proportion of high-rate killer CTLs with burst killing activity. Importantly, such activity was delayed and required activation with strong antigenic stimulation. Our study implies that functional heterogeneity allows CTL populations to calibrate prolonged cytotoxic activity to the size of target cell populations.


Subject(s)
Cytotoxicity, Immunologic/immunology , T-Lymphocytes, Cytotoxic/immunology , Flow Cytometry , Humans , Microscopy, Confocal , Models, Theoretical
2.
PLoS One ; 10(3): e0120053, 2015.
Article in English | MEDLINE | ID: mdl-25815811

ABSTRACT

The dynamics of the interaction between Cytotoxic T Lymphocytes (CTL) and tumor cells has been addressed in depth, in particular using numerical simulations. However, stochastic mathematical models that take into account the competitive interaction between CTL and tumors undergoing immunoediting, a process of tumor cell escape from immunesurveillance, are presently missing. Here, we introduce a stochastic dynamical particle interaction model based on experimentally measured parameters that allows to describe CTL function during immunoediting. The model describes the competitive interaction between CTL and melanoma cell nodules and allows temporal and two-dimensional spatial progression. The model is designed to provide probabilistic estimates of tumor eradication through numerical simulations in which tunable parameters influencing CTL efficacy against a tumor nodule undergoing immunoediting are tested. Our model shows that the rate of CTL/tumor nodule productive collisions during the initial time of interaction determines the success of CTL in tumor eradication. It allows efficient cytotoxic function before the tumor cells acquire a substantial resistance to CTL attack, due to mutations stochastically occurring during cell division. Interestingly, a bias in CTL motility inducing a progressive attraction towards a few scout CTL, which have detected the nodule enhances early productive collisions and tumor eradication. Taken together, our results are compatible with a biased competition theory of CTL function in which CTL efficacy against a tumor nodule undergoing immunoediting is strongly dependent on guidance of CTL trajectories by scout siblings. They highlight unprecedented aspects of immune cell behavior that might inspire new CTL-based therapeutic strategies against tumors.


Subject(s)
Melanoma/immunology , Melanoma/pathology , Models, Immunological , T-Lymphocytes, Cytotoxic/metabolism , Humans , Models, Biological , Monitoring, Immunologic , Stochastic Processes , Tumor Cells, Cultured , Tumor Escape
SELECTION OF CITATIONS
SEARCH DETAIL
...