Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Innovation (Camb) ; 5(2): 100588, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38440259

ABSTRACT

The combination of urbanization and global warming leads to urban overheating and compounds the frequency and intensity of extreme heat events due to climate change. Yet, the risk of urban overheating can be mitigated by urban green-blue-grey infrastructure (GBGI), such as parks, wetlands, and engineered greening, which have the potential to effectively reduce summer air temperatures. Despite many reviews, the evidence bases on quantified GBGI cooling benefits remains partial and the practical recommendations for implementation are unclear. This systematic literature review synthesizes the evidence base for heat mitigation and related co-benefits, identifies knowledge gaps, and proposes recommendations for their implementation to maximize their benefits. After screening 27,486 papers, 202 were reviewed, based on 51 GBGI types categorized under 10 main divisions. Certain GBGI (green walls, parks, street trees) have been well researched for their urban cooling capabilities. However, several other GBGI have received negligible (zoological garden, golf course, estuary) or minimal (private garden, allotment) attention. The most efficient air cooling was observed in botanical gardens (5.0 ± 3.5°C), wetlands (4.9 ± 3.2°C), green walls (4.1 ± 4.2°C), street trees (3.8 ± 3.1°C), and vegetated balconies (3.8 ± 2.7°C). Under changing climate conditions (2070-2100) with consideration of RCP8.5, there is a shift in climate subtypes, either within the same climate zone (e.g., Dfa to Dfb and Cfb to Cfa) or across other climate zones (e.g., Dfb [continental warm-summer humid] to BSk [dry, cold semi-arid] and Cwa [temperate] to Am [tropical]). These shifts may result in lower efficiency for the current GBGI in the future. Given the importance of multiple services, it is crucial to balance their functionality, cooling performance, and other related co-benefits when planning for the future GBGI. This global GBGI heat mitigation inventory can assist policymakers and urban planners in prioritizing effective interventions to reduce the risk of urban overheating, filling research gaps, and promoting community resilience.

2.
Nat Commun ; 13(1): 3559, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35729171

ABSTRACT

Robotics and autonomous systems are reshaping the world, changing healthcare, food production and biodiversity management. While they will play a fundamental role in delivering the UN Sustainable Development Goals, associated opportunities and threats are yet to be considered systematically. We report on a horizon scan evaluating robotics and autonomous systems impact on all Sustainable Development Goals, involving 102 experts from around the world. Robotics and autonomous systems are likely to transform how the Sustainable Development Goals are achieved, through replacing and supporting human activities, fostering innovation, enhancing remote access and improving monitoring. Emerging threats relate to reinforcing inequalities, exacerbating environmental change, diverting resources from tried-and-tested solutions and reducing freedom and privacy through inadequate governance. Although predicting future impacts of robotics and autonomous systems on the Sustainable Development Goals is difficult, thoroughly examining technological developments early is essential to prevent unintended detrimental consequences. Additionally, robotics and autonomous systems should be considered explicitly when developing future iterations of the Sustainable Development Goals to avoid reversing progress or exacerbating inequalities.


Subject(s)
Robotics , Sustainable Development , Biodiversity , Conservation of Natural Resources , Goals , Humans
3.
Sensors (Basel) ; 16(11)2016 Nov 02.
Article in English | MEDLINE | ID: mdl-27827836

ABSTRACT

We address the problem of accurately locating buried utility segments by fusing data from multiple sensors using a novel Marching-Cross-Section (MCS) algorithm. Five types of sensors are used in this work: Ground Penetrating Radar (GPR), Passive Magnetic Fields (PMF), Magnetic Gradiometer (MG), Low Frequency Electromagnetic Fields (LFEM) and Vibro-Acoustics (VA). As part of the MCS algorithm, a novel formulation of the extended Kalman Filter (EKF) is proposed for marching existing utility tracks from a scan cross-section (scs) to the next one; novel rules for initializing utilities based on hypothesized detections on the first scs and for associating predicted utility tracks with hypothesized detections in the following scss are introduced. Algorithms are proposed for generating virtual scan lines based on given hypothesized detections when different sensors do not share common scan lines, or when only the coordinates of the hypothesized detections are provided without any information of the actual survey scan lines. The performance of the proposed system is evaluated with both synthetic data and real data. The experimental results in this work demonstrate that the proposed MCS algorithm can locate multiple buried utility segments simultaneously, including both straight and curved utilities, and can separate intersecting segments. By using the probabilities of a hypothesized detection being a pipe or a cable together with its 3D coordinates, the MCS algorithm is able to discriminate a pipe and a cable close to each other. The MCS algorithm can be used for both post- and on-site processing. When it is used on site, the detected tracks on the current scs can help to determine the location and direction of the next scan line. The proposed "multi-utility multi-sensor" system has no limit to the number of buried utilities or the number of sensors, and the more sensor data used, the more buried utility segments can be detected with more accurate location and orientation.

4.
PLoS One ; 8(5): e61460, 2013.
Article in English | MEDLINE | ID: mdl-23671566

ABSTRACT

Artificial lighting is strongly associated with urbanisation and is increasing in its extent, brightness and spectral range. Changes in urban lighting have both positive and negative effects on city performance, yet little is known about how its character and magnitude vary across the urban landscape. A major barrier to related research, planning and governance has been the lack of lighting data at the city extent, particularly at a fine spatial resolution. Our aims were therefore to capture such data using aerial night photography and to undertake a case study of urban lighting. We present the finest scale multi-spectral lighting dataset available for an entire city and explore how lighting metrics vary with built density and land-use. We found positive relationships between artificial lighting indicators and built density at coarse spatial scales, whilst at a local level lighting varied with land-use. Manufacturing and housing are the primary land-use zones responsible for the city's brightly lit areas, yet manufacturing sites are relatively rare within the city. Our data suggests that efforts to address light pollution should broaden their focus from residential street lighting to include security lighting within manufacturing areas.


Subject(s)
Cities , Lighting , Urbanization , England , Environmental Pollution , Geographic Mapping , Humans , Light , Photography , Urban Population
5.
Rev Sci Instrum ; 83(4): 043908, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22559550

ABSTRACT

We describe a method, correlation force spectrometry (CFS), which characterizes fluids through measurement of the correlations between the thermally stimulated vibrations of two closely spaced micrometer-scale cantilevers in fluid. We discuss a major application: measurement of the rheological properties of fluids at high frequency and high spatial resolution. Use of CFS as a rheometer is validated by comparison between experimental data and finite element modeling of the deterministic ring-down of cantilevers using the known viscosity of fluids. The data can also be accurately fitted using a harmonic oscillator model, which can be used for rapid rheometric measurements after calibration. The method is non-invasive, uses a very small amount of fluid, and has no actively moving parts. It can also be used to analyze the rheology of complex fluids. We use CFS to show that (non-Newtonian) aqueous polyethylene oxide solution can be modeled approximately by incorporating an elastic spring between the cantilevers.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(5 Pt 2): 056305, 2010 May.
Article in English | MEDLINE | ID: mdl-20866320

ABSTRACT

By analysis of the thermally driven oscillation of an atomic force microscope (AFM) cantilever, we have measured both the damping and static forces acting on a sphere near a flat plate immersed in gas. By varying the proximity of the sphere to the plate, we can continuously vary the Knudsen number (Kn) at constant pressure, thereby accessing the slip flow, transition, and molecular regimes at a single pressure. We use measurements in the slip-flow regime to determine the combined slip length (on both sphere and plate) and the tangential momentum accommodation coefficient, σ . For ambient air at 1 atm between two methylated glass solids, the inverse damping is linear with separation and the combined slip length on both surfaces is 250 nm ± 100 nm , which corresponds to σ=0.77 ± 0.24 . At small separations (Kn>0.4) the measured inverse damping is no longer linear with separation, and is observed to exhibit reasonable agreement with the Vinogradova formula.

7.
Article in English | MEDLINE | ID: mdl-18569290

ABSTRACT

To determine the consequences of applying electrokinetics to clay soils, in terms of mechanisms acting and resulting effects on the clay, tests were conducted in which an electrical gradient was applied across controlled specimens of English China Clay (ECC) using 'inert' electrodes and a 'Reverse Osmosis' water feed to the electrodes (i.e., to mimic electrokinetic stabilisation without the stabiliser added or electrokinetic remediation without the contaminant being present). The specimens in which electromigration was induced over time periods of 3, 7, 14 and 28 days were subsequently tested for Atterberg Limits, undrained shear strength using a hand shear vane, water content, pH, conductivity and zeta potential. Water flowed through the system from anode to cathode and directly affected the undrained shear strength of the clay. Acid and alkali fronts were created around the anode and cathode, respectively, causing changes in the pH, conductivity and zeta potential of the soil. Variations in zeta potential were linked to flocculation and dispersion of the soil particles, thus raising or depressing the Liquid Limit and Plastic Limit, and influencing the undrained shear strength. Initial weakening around the anode and cathode was replaced by a regain of strength at the anode once acidic conditions had been created, while highly alkaline conditions at the cathode induced a marked improvement in strength. A novel means of indicating strength improvement by chemical means, i.e., free from water content effects, is presented to assist in interpretation of the results.


Subject(s)
Aluminum Silicates/chemistry , Electrochemistry/methods , Kaolin/chemistry , Soil Pollutants/chemistry , Chemical Phenomena , Chemistry, Physical , Clay , Electrochemistry/instrumentation , Electrodes , Hydrogen-Ion Concentration , Reproducibility of Results , Water/chemistry
8.
Phys Rev Lett ; 98(2): 028305, 2007 Jan 12.
Article in English | MEDLINE | ID: mdl-17358657

ABSTRACT

We describe measurement and interpretation of the force acting on a smooth hydrophilic glass particle during rapid (1-100 microm s(-1) approach to, and separation from, a hydrophilic glass plate in viscous concentrated aqueous sucrose solutions (0.001 Pa s

Subject(s)
Models, Chemical , Glass , Microscopy, Atomic Force/methods , Nanotechnology/methods , Sucrose/chemistry , Water/chemistry
9.
Med Educ ; 36(3): 282-8, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11879520

ABSTRACT

BACKGROUND: In 1993 the General Medical Council published its recommendations on undergraduate medical education. AIM: To study the implementation of these recommendations in UK medical schools by means of informal visitations. METHODS: Teams consisting of 3-5 members visited the 25 UK medical schools in a 3-year period commencing in early 1995. RESULTS: Substantial changes have occurred in undergraduate medical education since the publication of Tomorrow's Doctors. Of the 13 principal recommendations, 3 had been implemented in most medical schools and a further 8 substantially implemented by the majority. However, progress in health promotion and the development of appropriate assessment schemes has been slower. CONCLUSIONS: Informal visits have served a useful purpose in monitoring the implementation of the General Medical Council's recommendations on undergraduate medical education. In addition, they have encouraged dialogue with the medical schools and allowed the identification of examples of good practice including the establishment by most schools of medical education units.


Subject(s)
Clinical Competence/standards , Curriculum , Education, Medical, Undergraduate/organization & administration , Attitude of Health Personnel , Communication , Humans , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...