Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(23): 16859-16870, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38832453

ABSTRACT

We report the preparation of a co-crystal formed between the energetic molecule 3-nitro-1,2,4-triazol-5-one (NTO) and 4,4'-bipyridine (BIPY), that has been structurally characterised by high-pressure single crystal and neutron powder diffraction data up to 5.93 GPa. No phase transitions or proton transfer were observed up to this pressure. At higher pressures the crystal quality degraded and the X-ray diffraction patterns showed severe twinning, with the appearance of multiple crystalline domains. Computational modelling indicates that the colour changes observed on application of pressure can be attributed to compression of the unit cell that cause heightened band dispersion and band gap narrowing that coincides with a shortening of the BIPY π⋯π stacking distance. Modelling also suggests that the application of pressure induces proton migration along an N-H⋯N intermolecular hydrogen bond. Impact-sensitivity measurements show that the co-crystal is less sensitive to initiation than NTO, whereas computational modelling suggests that the impact sensitivities of NTO and the co-crystal are broadly similar.

2.
J Chem Phys ; 158(12): 124115, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37003752

ABSTRACT

Impact-sensitivity predictions based on the vibrational up-pumping model show a strong polymorph dependency for RDX and highlight that one of the high-pressure forms, which forms during shock-wave experiments, is appreciably more susceptible to mechanical initiation. The origin of the predicted impact sensitivity variation can be attributed to vibrational mode hardening by pressure and to differences in the molecular conformation of RDX in the four polymorphs studied. These polymorphs present different distributions of molecular vibrations within their respective up-pumping windows, which leads to their varying ability to up-pump and trap the vibrational energy that arises from mechanical insult.

3.
Front Chem ; 9: 726357, 2021.
Article in English | MEDLINE | ID: mdl-34354982

ABSTRACT

The reliable determination of gas-phase and solid-state heats of formation are important considerations in energetic materials research. Herein, the ability of PM7 to calculate the gas-phase heats of formation for CNHO-only and inorganic compounds has been critically evaluated, and for the former, comparisons drawn with isodesmic equations and atom equivalence methods. Routes to obtain solid-state heats of formation for a range of single-component molecular solids, salts, and co-crystals were also evaluated. Finally, local vibrational mode analysis has been used to calculate bond length/force constant curves for seven different chemical bonds occurring in CHNO-containing molecules, which allow for rapid identification of the weakest bond, opening up great potential to rationalise decomposition pathways. Both metrics are important tools in rationalising the design of new energetic materials through computational screening processes.

SELECTION OF CITATIONS
SEARCH DETAIL