Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22278480

ABSTRACT

This paper presents a novel virus surveillance framework, completely independent of phylogeny-based methods. The framework issues timely alerts with an accuracy exceeding 85% that are based on the co-evolutionary relations between sites of the viral multiple sequence array (MSA). This set of relations is formalized via a motif complex, whose dynamics contains key information about the emergence of viral threats without the referencing of strain prevalence. Our notion of threat is centered at the emergence of a certain type of critical cluster consisting of key co-evolving sites. We present three case studies, based on GISAID data from UK, US and New York, where we perform our surveillance. We alert on May 16, 2022, based on GISAID data from New York, to a critical cluster of co-evolving sites mapping to the Pango-designation, BA.5. The alert specifies a cluster of seven genomic sites, one of which exhibits D3N on the M (membrane) protein-the distinguishing mutation of BA.5, three encoding ORF6:D61L and the remaining three exhibiting the synonymous mutations C26858T, C27889T and A27259C. New insight is obtained: when projected onto sequences, this cluster splits into two, mutually exclusive blocks of co-evolving sites (m:D3N,nuc:C27889T) linked to the five reverse mutations (nuc:C26858T,nuc:A27259C,ORF6:D61L). We furthermore provide an in depth analysis of all major signaled threats, during which we discover a specific signature concerning linked reverse mutation in the critical cluster.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21252325

ABSTRACT

The COVID-19 global outbreak represents the most significant epidemic event since the 1918 influenza pandemic. Simulations have played a crucial role in supporting COVID-19 planning and response efforts. Developing scalable workflows to provide policymakers quick responses to important questions pertaining to logistics, resource allocation, epidemic forecasts and intervention analysis remains a challenging computational problem. In this work, we present scalable high performance computing-enabled workflows for COVID-19 pandemic planning and response. The scalability of our methodology allows us to run fine-grained simulations daily, and to generate county-level forecasts and other counter-factual analysis for each of the 50 states (and DC), 3140 counties across the USA. Our workflows use a hybrid cloud/cluster system utilizing a combination of local and remote cluster computing facilities, and using over 20,000 CPU cores running for 6-9 hours every day to meet this objective. Our state (Virginia), state hospital network, our university, the DOD and the CDC use our models to guide their COVID-19 planning and response efforts. We began executing these pipelines March 25, 2020, and have delivered and briefed weekly updates to these stakeholders for over 30 weeks without interruption.

SELECTION OF CITATIONS
SEARCH DETAIL
...